CHMY 361 Exam 2

Friday, Oct. 12, 2012, 7:55-8:55 AM

Name_____

4 x 6 note card

Last,

First

100 points in 8 problems on 6 pages including tables 4.1 and A.5

For full credit show all work and put correct units on final answers. Note that information that is not

needed may be present in some problem should have been

(13 pts) 1. (a) Using data from Table A.5, calculate the equilibrium constant for the autoionization of water at 298 K

H2O(aq)----> H⁺(aq) + OH⁻(aq)

(b) Calculate K for this reaction at 373 K.

$$\ln \frac{K_{373}}{K_{278}} = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{373} - \frac{1}{298} \right) \qquad \Delta H = -229.99 - (-285.83) \\
= +55.84 \quad \text{M} / \text{my}$$

$$|N| \frac{K_{373}}{9.9 \times 10^{-1/5}} = \frac{-55,840}{8.3145} \left(-6.747 \times 10^{4} \right)$$

$$K_{373} = 9.9 \times 10^{-1/5} \times e = 8.5 \times 10^{1/3}$$

(12 pts) 2. For the reaction : $N_2(g) + O_2(g) --> 2NO(g)$, calculate ΔS^0 298 K. using the data in Table A.5

$$\Delta S^{0} = 2(210.76) - (191.61) - (205.14)$$

$$= + 24.77 \frac{J/K}{}$$

(12 pts) 3. A supersaturated solution of sugar at room temperature (made by adding sugar to hot water and cooling to room temperature) will eventually precipitate crystals of sugar. If the process is done isothermally and at constant pressure, tell whether the following are positive, zero, or negative. Give a brief justification for each of your answers.

Q - AT D AH - AS - AG
DG = AH - TAS = neg.

Ordering spontaneous

AH must be neg.

Q = AH

(13 pts) 4. (a) If during an isothermal process at 300 K and constant pressure, the system is said to give off 600 kJ of heat and does 200 kJ of non-PV work and $\Delta S = -10$ J/K, what is ΔG ?

- (b) Is this process spontaneous or is it fictitious? Explain your answer.

 Spontaneous $\Delta S_{\mu\nu\nu} = +1990$ allowed by

 NoT because ΔG is negative
- (10 pts) 5. Given that: dA = -PdV SdT(a) what is the partial derivative of A with respect to V at constant T? $\left(\frac{\partial A}{\partial V}\right)_{T} = -P$
 - (b) what is the partial derivative of S with respect to V at constant T?

(b) Write the balanced equation for this reaction and the expression for Q so that there are 2 moles of NADPH in the balanced equation.

moles of NADPH in the balanced equation.

$$2 \text{ mol NDPH} \text{ Means} 2 \times Ze = 4e^{-} \Pi = 4$$
 $2 \text{ NADPH} + -> 2 \text{ NAOP} + 2 \text{ H}^{+} + 4e^{-}$
 $4/3 \text{ [Fet }^{3} + 3e^{-} -> \text{ ZNAOP}^{+} + 2 \text{ H}^{+} + 4/3 \text{ Fe}^{(5)}]$
 $2 \text{ NADPH} + \frac{1}{3} \text{ Fe}^{3+} -> \text{ ZNADP}^{+} + 2 \text{ H}^{+} + 4/3 \text{ Fe}^{(5)}$

(c) SET UP the equation that gives ξ for this reaction when balanced as in (b) when the pH is 5, and the activity of each of the aqueous species = 0.1M, and Fe(s) is pure.

5, and the activity of each of the aqueous species = 0.1M, and Fe(s) is pure.

$$E = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}$$

(10 pts) 7. If a system is known to have 10^{N} microstates, where N is 1×10^{50} , calculate the absolute entropy using Boltzmann's equation for absolute entropy.

$$S = K_B |_{N \mid 0} |_{6 \times 10^{23}} = (6 \times 10^{23}) K_B |_{N \mid 0}$$

$$= R \times 2.303 = 8.3145 \times 2.303 =$$

$$= 19.14 J/K$$

- For the acid ionization, $HA(aq) + H_2O(liq) \longrightarrow H^+(aq) + A^-(aq)$, $K = 1 \times 10^{-4}$ at 298 K 8. (15 pts)and $\Delta H^0 = +20 \text{ kJ/mol}$.
 - (a) Calculate ΔG^0 for this reaction at 298 K.

$$\Delta G = -RTINK = -8.3145(298)|n|0^4$$

$$= +22.82 KJ/mo)$$

(b) Write Q for this reaction, assuming non-ideal behavior and recognizing that the water is not 100% pure.

(c) If the activity coefficients for H⁺ (aq) and A⁻ (aq) are both 0.7 (because of added salt), and [HA]=1 XH20=1 XH20=0.8 that of water is 0.8, what will be the pH? \$ 8 HA = 0.8

$$K = \frac{(0..7)[H'] 0.7[A']}{0.8[HA] 0.8[HA]} = 10$$

$$X_{H20} = 1$$

$$[H'] = [A'] = 1$$

$$[D'] \times (0.8)^{2} = 1$$

$$[H']^{2} = \frac{10^{-4} \times (0.8)^{2}}{(0.7)^{2}}$$

$$[H']^{2} = \frac{10^{-4} \times (0.8)^{2}}{(0.7)^{2}}$$

$$[H']^{2} = \frac{10^{-2} \cdot 8}{(0.7)^{2}} = 0.01142 \text{ M}$$

$$PH = -\log 0.01142 = 10.94$$
Page 4 of 6

TABLE 4.1 Standard reduct	ion electrode potentials at 25%		
Oxidant/Reductant	Electrode reaction	€ 0 (V)*	ε ⁰ ' (V) [†] (pH 7)
Li Li	Li' + e' → Li	-3.045	
Na '/Na	$Na + e \rightarrow Na$	-2.714	
$Mg^{2^{-}}/Mg$	$Mg^{2-} + 2e^{-} \rightarrow Mg$	-2.363	
OH - /H ₂ /Pt	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.8281	
Zn^{2-}/Zn	$Zn^2 + 2e \rightarrow Zn$	-0.7628	
Acetate/acetaldehyde	OAc $+3H^{-} + 2e^{-} \rightarrow CH_{3}CHO + H_{2}O$		-0.581
Fe ² /Fe	$-Fe^{2-} + 2e^{-} \rightarrow Fe$	-0.4402	
Gluconate/glucose	$C_bH_{11}O_7^- + 3H^+ + 2e \rightarrow C_6H_{12}O_6 + H_2O$		-0.44
Spinach ferredoxin	$Fd[Fe(III)] + e^{-} \rightarrow Fd[Fe(II)]$		-0.432
CO ₂ /formate	$CO_2 + 2H^2 + 2e \rightarrow HCO_2 + H^2$	-0.20	-0.42
NAD-/NADH‡	$NAD^- + H^- + 2e \rightarrow NADH$	-0.105	-0.320
Fe ³⁻ /Fe	$Fe^3 + 3e^- \rightarrow Fe$	-0.036	
$H^{-}/H_{2}/Pt$	$2H + 2e \rightarrow H_2$	0 .	-0.421
Acetoacetate/	$CH_3COCH_2CO_2 + 2H^2 + 2e^2 \rightarrow$		
eta-hydroxybutyrate	CH3CHOHCH2CO2		-0.346
Mn hematoporphyrin IX	$He[Mn(III)] + e \rightarrow He[Mn(II)]$		-0.342
NADP-/NADPH	$NADP^- + H^- + 2e^- \rightarrow NADPH$	Marine of Principles of Principles	<u>-0.324</u>
Horseradish peroxidase	$HRP[Fe(III)] + e^- \rightarrow HRP[Fe(II)]$		-0.271
FAD/FADH ₂	$FAD + 2H^- + 2e \rightarrow FADH_2$		-0.219
Acetaldehyde/ethanol	$CH_3CHO + 2H^- + 2e \rightarrow CH_3CH_2OH$		-0.197
Pyruvate/lactate	$CH_3COCO_2 + 2H' + 2e' \rightarrow$		0.10
Occal as autota / contata	CH₃CHOHCO₂ -		-0.18
Oxaloacetate/malate	$O_2CCOCH_2CO_2^- + 2H^- + 2e^- \rightarrow O_2CCHOHCH_2CO_2^-$	•	-0.166
Fumarate/succinate	$O_2CCH = CHCO_2 + 2H^- + 2e^- \rightarrow O_2CCH_2CH_2CO_2$		+0.031
Myoglobin	$Mb[Fe(III)] + e^{-} \rightarrow Mb[Fe(II)]$		+0.046
Distriction	[()] · · · · · · · · · · · · · · · · · · ·		

TABLE A.5 Inorganic Compounds*

	•		4 are in
	$\Delta H_f^0 \equiv \widetilde{H}^0$	$ar{S}^{f 0}$	$\Delta G_f^0 \equiv \overline{G}^0$
	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	(kJ ['] mol ⁻¹)
Ag(s)	0	42.55	0
$Ag^+(aq)^{\dagger}$	105.579	72.68	77.107
AgCl(s)	-127.068 $-$	96.2	-109.789
C(g)	716.682	158.096	671.257
C(s, graphite)	0 •	5. 74 0	0
C(s, diamond)	1.895	- 2.377	2.900
Ca(s)	0	41.42	0
$CaCO_3(s, calcite)$	-1206.92	92.9	-1128.79
$Cl_2(g)$	0	223.066	0
$Cl^{-}(aq)$	-167.159	56.5	-131.228
CO(g)	-110.525	197.674	-137.168
$CO_2(g)$	-393.509	213.74	-394.359
$CO_2(aq)$	-413.80	117.6	-385.98
$HCO_{3}^{-}(aq)$	-691.99	91.2	-586.77
$CO_3^{2-}(aq)$	-677.14	-56.9	-527.81
Fe(s)	0	27.28	0
$\text{Fe}_2 \acute{\text{O}}_3(s)$	-824.2	87.40	-742.2
$H_2(g)$	0	130.684	0
$H_2O(g)$	-241.818	188.825	-228.572
$-H_2O(l)$	-285.830 -	69.91	-237.129 $-$
$- H^+(aq)$	0	0	0
- OH ⁻ (aq)	-229.9 94 -	-10.75	-157.244 <i>-</i>
$H_2O_2(aq)$	-191.17	143.9	-134.03
$H_2S(g)$	-20.63	205.79	-33.56
$N_2(g)$	0	(191.61)	0
$NH_3(g)$	-46.11	192.45	-16.45
$NH_3(aq)$	-80.29	111.3	-26.50
$NH_4^+(aq)$	-132.51	113.4	-79.31
NO(g)	- 90.25	(210.761)	86.55
$NO_2(g)$	33.18	240.06	51.31
$NO_3(aq)$	-205.0	146.4	-108.74
$Na^+(aq)$	-240.12	59.0	-261.905
NaCl(s)	-411.153	72.13	-384.138
NaCl(aq)	-407.27	115.5	-393.133
NaOH(s)	-425.609	64.455	-379.494
$O_2(g)$	0	205.138	0
$O_3(g)$	142.7	238.93	163.2
S(rhombic)	0	31.80	0
$SO_2(g)$	-296.830	248.22	-300.194
$SO_3(g)$	-395.72	256.76	-371.06
_ 0			

^{*} Standard thermodynamic values at 25°C (298 K) and 1 atm pressure. Values for ions refer to an aqueous solution at unit activity on the molarity scale. Standard enthalpy of formation, ΔH_f^0 , third-law entropies, S^0 , and standard Gibbs free energy of formation, ΔG_f^{0*} are given.

[†] The standard state for all ions and for species labeled (aq) is that of a solute on the molarity scale.

Source: Data from The NBS Tables of Thermodynamic Properties, D. D. Wagman et al., eds., J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).