DNA Sequencing

mobility inversely proportional to length in a denaturing gel (e.g. containing urea)

Sanger et al.: DNA polymerase copies a single strand starting with a primer in a soup of the 4 deoxy-nucleotide triphosphates, spiked with 10% of di-deoxy form of one (for example G').

The G' can be incorporated by the enzyme but it cannot extend the chain, thereby creating a *random* distribution of chain lengths, *all ending with G'* which is now typically labeled with a fluorescent dye.

The soup could also contain 10% of C', A', and T', each with a different colored dye.

Gel electrophoresis then gives all the possible lengths, each with the color of the base at that position.
adenosine triphosphate (in RNA)

2’-deoxyadenosine triphosphate (in DNA)

2’,3’-dideoxyadenosine triphosphate (in No NA)
Spiked soup
+ template
+ polymerase

\[\text{Suppose primer codes for this:} \]

The di-deoxy nucleotides incorporate, but cannot extend the chain.

The \(G' \) is in \textit{low} concentration so incorporation is equally probable at all positions.

Possible Outcomes:

\begin{align*}
\text{Guanine:} \\
G & \quad \text{Length} = 1 \\
G' & \quad 2 \\
GG & \quad 3 \\
GG & \quad 4 \\
GG & \quad 5 \\
GG & \quad 6 \\
GG & \quad 7 \\
GG & \quad 8 \\
GG & \quad 9 \\
GG & \quad 10 \\
GG & \quad 11 \\
\text{Cytosine:} \\
GC' & \quad 2 \\
GC' & \quad 3 \\
GC' & \quad 4 \\
GC' & \quad 5 \\
GC' & \quad 6 \\
GC' & \quad 7 \\
GC' & \quad 8 \\
\end{align*}

eetc. for A' and T'
7M UREA: Mobility = MW

Single Strands
GGCACGACAGGT
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6.16 (a) Schematic illustration of a sequencing gel electrophoresis pattern.
The sequence of the first 20 bases of a single strand of DNA is shown. The strand
moves from the left to the right at the positive electrode end of the gel. Gel
at 0.67% methylene bisacrylamide. 7 M urea. After electrophoresis (the positive
electrode is at the bottom of the gel), autoradiography for 8 hr produced the pat-
tern shown. The sequence is now simply read off. [A. M. Maxam and W. Gilbert.
These regions are now known to code for small regulatory RNAs, a rapidly exploding area of knowledge.

Wikipedia RNAi

Many RNAs are involved in modifying other RNAs. **Introns** are spliced out of pre-mRNA by spliceosomes, which contain several small nuclear RNAs (snRNA), or the introns can be ribozymes that are spliced by themselves. RNA can also be altered by having its nucleotides modified to other nucleotides than A, C, G and U. In eukaryotes, modifications of RNA nucleotides are in general directed by small nucleolar RNAs (snoRNA; 60-300 nt), found in the nucleolus and cajal bodies. snoRNAs associate with enzymes and guide them to a spot on an RNA by basepairing to that RNA. These enzymes then perform the nucleotide modification. rRNAs and tRNAs are extensively modified, but snRNAs and mRNAs can also be the target of base modification. RNA can also be methylated.

Uridine to pseudouridine is a common RNA modification.
The Second Coming of RNAi
Now showing clinical progress against liver diseases, the gene-silencing technique begins to fulfill some of its promises.

By Eric Bender | September 1, 2014

THE ART OF SILENCING: Small interfering RNA molecules are incorporated into an RNA-induced silencing complex where they bind and degrade target messenger RNAs (yellow with red rings). Taking advantage of this natural RNA interference (RNAi) pathway, researchers are developing therapeutics for liver-based diseases, viral infections, cancer, and more.
When these *hypervariable fingerprint regions* are cut up at a specific sequence (such as CAATTG) by a restriction enzyme, the resulting gel is unique to each individual. This is called RFLP analysis, standing for *restriction fragment length polymorphism analysis*.
Large **double stranded** DNA “crawls” through the gel. This is called “reptation”, i.e., snake-like motion.
CHAPTER 9: CHEMICAL KINETICS

CONCEPTS:

- Require collisions (often)
- Require energy (usually) temperature dependence
- Concentration dependence (usually)
- Catalysts

TWO DISTINCT PARTS

1. EXPERIMENTAL \rightarrow RATE LAW
 Measure: Concentration dependence,
 Temperature dependence, Solvent effects, catalysts, etc.
 i.e. What actually happens MACROSCOPICALLY

2. MECHANISM: A detailed "movie" of how we think the reaction happens at the molecular level.
 - From the imagination of humans
 - Can be proven wrong, but CANNOT BE PROVEN CORRECT (with certainty)
 - Uses ELEMENTARY REACTIONS
Chapter 9: Kinetics: Rates of Chemical Reactions

Example:

$2A + 3B \rightarrow C$ (which is equivalent to: $A + (3/2)B \rightarrow (1/2)C$)

Rate of reaction $= v = \frac{d[C]}{dt}$ always has units of conc. time$^{-1}$

Note that: $v = \frac{d[C]}{dt} = -\frac{1}{2} \frac{d[A]}{dt} = -\frac{1}{3} \frac{d[B]}{dt}$

Equally acceptable is disappearance of reactants:

$v = -\frac{d[A]}{dt} = -\frac{2}{3} \frac{d[B]}{dt} = 2 \frac{d[C]}{dt}$
\[v = \text{function of (concentrations of reactants)} = \text{the RATE LAW} \]

often: \[\text{rate} = k[A]^l[B]^m[C]^n, \text{ (but not always)} \]

\[l = \text{order with respect to A} \]

\[m = \text{order with respect to B} \]

\[n = \text{order with respect to C} \]

\[l + m + n = \text{overall order of the reaction} \]

rate is **ALWAYS POSITIVE**,

with units = \text{conc. time}^{-1}

And, the rate constant, \(k \), is **ALWAYS POSITIVE**,

with units = \text{conc.}^{-(l+m+n)+1} \text{ time}^{-1}

(if \(v = k[A]^l[B]^m[C]^n \))
A mechanism *predicts* a rate law, but

A rate law CANNOT be deduced from a STOICHIOMETRIC Equation. This is *abundantly* clear from the table below.

TABLE 9.1 Rate Laws and Kinetic Order for Some Reactions

<table>
<thead>
<tr>
<th>Stoichiometric reaction</th>
<th>Rate law</th>
<th>Kinetic order</th>
</tr>
</thead>
<tbody>
<tr>
<td>sucrose + H₂O ─→ fructose + glucose</td>
<td>(v = k[\text{sucrose}])</td>
<td>1</td>
</tr>
<tr>
<td>L-isoleucine ─→ D-isoleucine</td>
<td>(v = k[\text{L-isoleucine}])</td>
<td>1</td>
</tr>
<tr>
<td>(^{14}\text{C} \rightarrow^{14}\text{N} + \beta^-)</td>
<td>(v = k[^{14}\text{C}])</td>
<td>1</td>
</tr>
<tr>
<td>2 proflavin ─→ proflavin dimer</td>
<td>(v = k[\text{proflavin}]^2)</td>
<td>2</td>
</tr>
<tr>
<td>(p)-nitrophenylacetate + 2 OH(^-) ─→</td>
<td>(v = k[\text{p-nitrophenylacetate}][\text{OH}^-])</td>
<td>2 (overall)</td>
</tr>
<tr>
<td>(p)-nitrophenolate + acetate + H₂O (pH 9)</td>
<td>(v = k[\text{Hb} \cdot 3\text{O}_2][\text{O}_2])</td>
<td>2 (overall)</td>
</tr>
<tr>
<td>hemoglobin(\cdot3\text{O}_2 + \text{O}_2 \rightarrow \text{hemoglobin} \cdot 4\text{O}_2)</td>
<td>(v = k[\text{H}_2][\text{I}_2])</td>
<td>2 (overall)</td>
</tr>
<tr>
<td>(\text{H}_2 + \text{I}_2 \rightarrow 2\ \text{HI})</td>
<td>(v = \frac{k[H_2][Br_2]^{1/2}}{k' + [\text{HBr}]/[\text{Br}_2]})</td>
<td>Complex</td>
</tr>
<tr>
<td>(\text{H}_2 + \text{Br}_2 \rightarrow 2\ \text{HBr})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3\text{CHO} \rightarrow \text{CH}_4 + \text{CO})</td>
<td>(v \approx [\text{CH}_3\text{CHO}]^{3/2})</td>
<td>3/2 (approx.)</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_5\text{OH} \rightarrow \text{CH}_3\text{CHO}) (liver enzymes)</td>
<td>(v \text{ constant})</td>
<td>0</td>
</tr>
</tbody>
</table>
Orders and rate constant MUST be determined by EXPERIMENT
Below is experimental data for $2A + 3B \rightarrow C$

Example:

<table>
<thead>
<tr>
<th>Initial Conc of A (M)</th>
<th>Initial Conc of B</th>
<th>Initial Rate (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6</td>
<td>0.04</td>
</tr>
</tbody>
</table>

What ARE The orders?

- A is 1st order
- B is 2nd order

and what is the rate constant?

$$- \frac{d[A]}{dt} = k \times 0.2 \times 0.3^2 = 0.01$$

$$k = \frac{0.01 \text{Ms}^{-1}}{0.2 \times 0.3^2 \text{M}^3} = 0.555 \text{M}^{-2} \text{s}^{-1}$$
First Order Processes

These **INCREDBLY IMPORTANT** types of processes include growth of living objects, e.g., humans, decline of populations, growth and decay of bank accounts and investments, etc.
or in a word: ?

EXPONENTIAL decay or growth (which have same math except for sign)

\[
\frac{dN}{dt} = -kN \quad \text{where } N \text{ can be in any units} \quad \text{WHY?}
\]

in words: rate of **loss** of A is directly proportional to A
or rate of **growth** of A is directly proportional to A

if \(\frac{dN}{dt} = +kN\) \quad where \(N \) can be in any units

or, if we divide both sides by N and multiply by dt (which changes nothing)

\[
\frac{dN}{N} = -kdt \quad \text{in words this says: fractional change is directly proportional to time}
\]
rate = \frac{dN}{N} = -k dt \quad \text{IN WORDS this says: fractional change is directly proportional to time}

How much do we have after time passes? What is the SUM of FRACTIONAL changes???

\[\int \frac{dN}{N} = \pm k \int dt \]

\[\ln \left(\frac{N_2}{N_1} \right) = \pm k(t_2 - t_1) \]

or, what is the same thing:

\[\frac{N(t_2)}{N(t_1)} = f = e^{\pm k(t_2 - t_1)} \]

The first order mantra:

\[\frac{N(t_2)}{N(t_1)} = f = e^{\pm k(t_2 - t_1)} \]

Given any 2 of k, t, or f, find the 3rd
<table>
<thead>
<tr>
<th>months</th>
<th>cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4000</td>
</tr>
<tr>
<td>2</td>
<td>8000</td>
</tr>
<tr>
<td>3</td>
<td>16000</td>
</tr>
<tr>
<td>4</td>
<td>32000</td>
</tr>
<tr>
<td>5</td>
<td>64000</td>
</tr>
<tr>
<td>6</td>
<td>128000</td>
</tr>
<tr>
<td>7</td>
<td>256000</td>
</tr>
<tr>
<td>8</td>
<td>512000</td>
</tr>
<tr>
<td>9</td>
<td>1024000</td>
</tr>
<tr>
<td>10</td>
<td>2048000</td>
</tr>
<tr>
<td>11</td>
<td>4096000</td>
</tr>
<tr>
<td>12</td>
<td>8192000</td>
</tr>
<tr>
<td>13</td>
<td>16384000</td>
</tr>
<tr>
<td>14</td>
<td>32768000</td>
</tr>
<tr>
<td>15</td>
<td>65536000</td>
</tr>
<tr>
<td>16</td>
<td>1.31E+08</td>
</tr>
<tr>
<td>17</td>
<td>2.62E+08</td>
</tr>
<tr>
<td>18</td>
<td>5.24E+08</td>
</tr>
<tr>
<td>19</td>
<td>1.05E+09</td>
</tr>
<tr>
<td>20</td>
<td>2.1E+09</td>
</tr>
<tr>
<td>21</td>
<td>4.19E+09</td>
</tr>
<tr>
<td>22</td>
<td>8.39E+09</td>
</tr>
</tbody>
</table>

About this time in 2014, **ebola cases doubled in one month**. Why did this cause concern?

Suppose the doubling rate persisted for 2 years.

In less than 2 years: **EVERYBODY would be infected**