Lecture #22

From Notes 12, 2009

(A) EXCITED STATE RADIATIVE LIFETIME" (EINSTEIN A COEFFICIENT)

Consider any two states of a molecule within a Container in equilibrium with electromagnetic vadiation. States 1 & Z are populated. with numbers of moderales N, & N2 according to Boltzmann $\frac{N_2}{N_1} = \frac{-(E_2-E_1)}{KT} = \frac{-h2}{KT}$

5 tate 2, N2 molecules Stimulated Emission. Absorption

Absorption

Tate = N.B. 200) Spontaneous Emission rate = N2 B21 P(2) rate = N2A State 1, N. molecoules.

> At equilibrium: N, B12 (6) = N2 B21 P(2) + N2 A The energy density = D(2) = 8TT h = Planck's
>
> Planck's
>
> Black be Blackbody

requires another expression for pas But the kinetics

$$\frac{P(2)}{\frac{N_1}{N_2}B_{12}-B_{21}} = \frac{A}{\frac{h^2}{B_{12}}B_{12}-B_{21}} = \frac{A/B_{21}}{\frac{h^2}{B_{21}}B_{21}}$$

Einstein's brilliance here was postulating stimulated emission (not confirmed until the 1960s)
The last equation shows that:

 $B_{12} = B_{21} = B'$ $A = 8\pi h 5^3 B'$

but $B = \omega as$ defined by: rate = $B \rho(\omega) = B \rho(\omega)$ $B = \frac{4\pi [M_{Si}]^2}{\hbar^2 6}$

 $O(\omega) = \frac{de}{d\omega}$ $O(\omega) = \frac{de}{d\omega}$

So $e(\omega) = \frac{de}{2\pi dz} = \frac{1}{2\pi} e(z)$

 $B_{\mathcal{O}}(\omega) = B_{\mathcal{O}}(\omega) = B_{\mathcal{O}}(\omega) = B_{\mathcal{O}}(\omega) ; B_{\mathcal{O}}(\omega)$

 $B' = \frac{2 \left| \mu_{fi} \right|^2}{\hbar^2 E_0}$

 $A = \frac{8\pi h_{23}^{3} \cdot 2/M_{fi}/^{2}}{\frac{h_{1}^{2}}{2\pi}} = \frac{64\pi^{3} 2^{3} M_{fi}/^{2}}{h \in 0}$

The Kate of spontaneous emission depends on the transition dipole squared x (frequency) Lifetime

 $V(x) = \frac{dN}{dt} = \frac{dN}{dt} = -AN$ $V(x) = \frac{d}{dt} = \frac{d}{dt}$ $N(x) = \frac{d}{dt} = \frac{d}{dt}$ $N(x) = \frac{d}{dt}$

where T = lifetime" = A

Exercise: (a) Find the Nifetime for an excited State for which the transition dipole length = 1 h at a wavelength of 500 nm.

(b) Compare your result to a transition at $\overline{D} = 1 \, \mathrm{cm}'$ with the Same pls..

B) The LIPETIME OF a COHERENTLY EXCITED

Super Position.

 $\mathcal{H} = \mathcal{H}_0 + \mathcal{W}$ $\mathcal{H}_0/n\rangle = \mathcal{E}_n/n\rangle \qquad \mathcal{H}_0/m\rangle = \mathcal{E}_m/m\rangle$ $\mathcal{H}_0/m\rangle \neq 0 = \mathcal{W}_{nm}$

Molecular Eigen states = 1 = bn/n> + \(\frac{1}{m} \) \ bmi/m >

So a bound of eigenstates is observed whose spectrum will look like:
absorbance 1 with to Whm
rate of absorption to state 4: is & Kg/M/4:
a= 19/m/(bn:/n) + = bm: lm>) 2
$d = \frac{2}{b_n \cdot \left \frac{kg}{M} \right ^2}$
For equally spaced levels of Em3 and a Constant interaction Wnm
bni $\sqrt{\frac{\Delta^2}{\Delta^2 + (\bar{z} - \bar{z}_n)^2}}$ (a horengian
Note half width at half maximum = Δ
Now if a pulse of radiation is applied such that the spectral width is $\Delta z \gg 2\Delta$ centered at z_n
all the 4: are coherently excited, Producing the wave packet
Has Italian by the

Now, the rate of spontaneous emission from the coherent superposition is:

rate of / 1/4,)

FKgMZ (g/M/n) bni (bnih) + Zbmilm) e)

or Kg/M/n/2bni eiwit

at Hgn/2 at time t=0 Since \(\frac{2}{bni} = 1 \)

Dephasing occurs as time increases and the different 4: parts get out of phase.

Note that because of close specing.

\[\frac{2}{bnie} = \frac{1}{bn(wi)} \frac{1}{c} \text{wit} \]

\[\frac{1}{bn(wi)} \frac{1}{c} \text{dwi} \]

= Fourier transform of à Lorenzian.

 $\int \frac{\cos \omega t}{1 + \omega^2} = \pi e^{-t} = exponential$

 $\int \frac{\Delta^2 \cos \omega t d\omega}{\Delta^2 + \omega^2} = \Delta \int \frac{\cos \omega \Delta t}{\Delta} \frac{d\omega}{\Delta} = \Delta C$

Fato \sqrt{x} $\frac{1}{\sqrt{x}}$ $\frac{1}$

When can be interaction with radiation field.

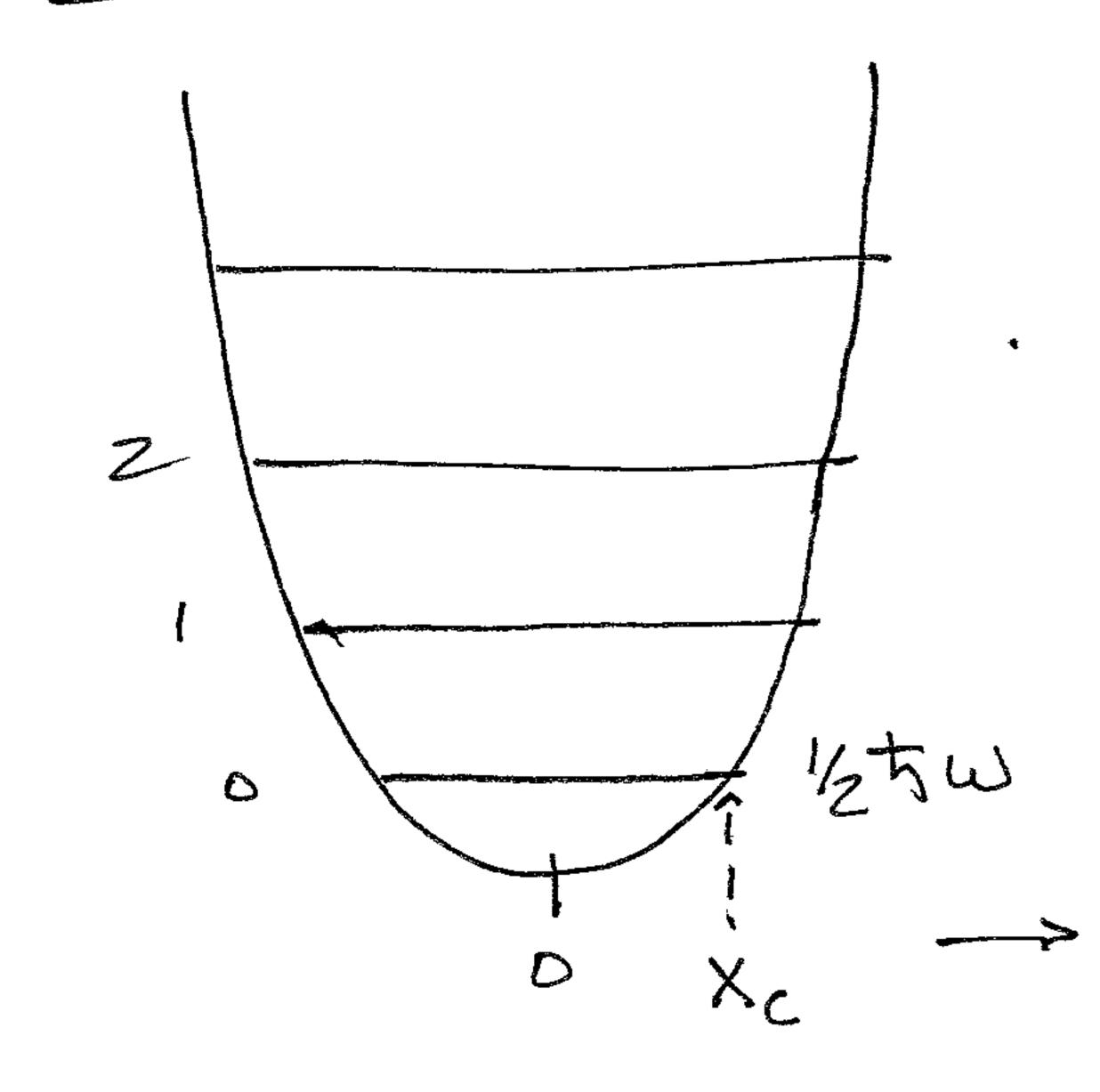
in which this describes spontaneous

and stimulated emission.

or may be high vibrational levels of a lower electronic state. Then $N' = \alpha \quad non-radiative \quad rete$.

COSCILLATOR STRENGTH = f

This goes back to Drive's theory for a harmonically bound electron.



 $X_c = Classical turning point$ $= where E = V = 1/2 Kx^2$ $W = 2\pi 2 U = \sqrt{\frac{K}{m}}$ K = mW

 $\frac{12hw}{X^2 = \frac{1}{mw}} \times C$

Classical turning point when n=0 is like the "Bohr radws" of the harmonic osc.

Xc = 1/to

Prate of absorption for $0 - 71 \% e \times_{01}^{2}$ Can show that $\times_{01} = \frac{1}{12} \times_{c} \times_{c}$ So rate of $e^{2} \times_{c}^{2} = e^{2} \frac{1}{12} \times_{c} \times_{c}^{2}$

Oscillator Strength for any transition man 15 defined as the ratio.

 $f = \frac{|\mathcal{M}_{mn}|^2}{|\mathcal{M}_{oi}|^2} = \frac{2m\omega/\mathcal{M}_{mn}|^2}{e^2 t} = \frac{2m\omega\omega/\mathcal{M}_{mn}|^2}{t}$

Exercise : 2: Find the oscillator

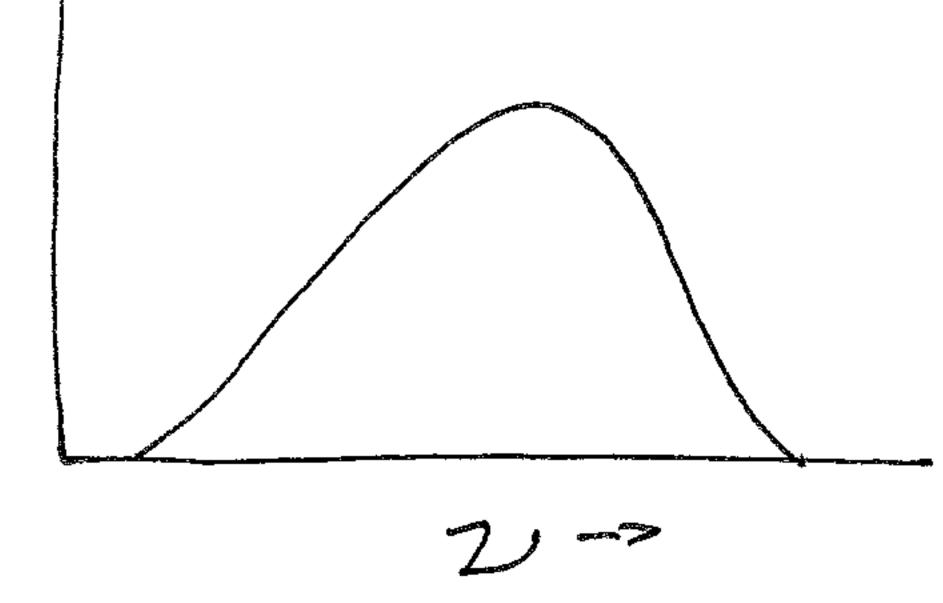
5trengths for the transitions

in excercise 1 a & 16.

Finding /Mmn/ from E rate = 4 x 10 6 F = 4 x 10 6 I = 4x109 C

Ba= 4x10'6c = 41 / Mmn)

But Espically (=(2)



So Munular 4x10 Ctr 60 (E(2)) d2

F 4x10 ChGo (Area in (Mcm') cm')
16TT 2 ave.

A "good" problem would be to find the proportionality Constant that changes into =

MULTI PHOTON ABSORPTION & SCATTERING

excited electronic ω' ω'

Both processes in volve the same non-stationary state which is often decribed as the molecule with I photon of energy the "absorbed" even though no Stationary (energy eyen) state exists at $E = E_i + \hbar \omega$.

For 2-photon abs, a 2"d photon is absorbed by the "virtual state" and a stationary state, (f), is reached.

For Ramon Scattering a 2 photon with energy tow's spontaneously emitted

Sketch of 2nd order time dependent Perturbation theory: The KDH equation. IF $W_{cos}W = W_{cos}W = W_{es}W =$ [we start with $\psi = 197$ at t = 0] At very short times, the uncertainty in energy is large, and all states IK> will get amplitude by on Wkg on Mkg Integrating ques. $b_{k}^{(1)} = \frac{-1}{2\pi} W_{kg} \left[\frac{i(w_{kg} - w)t''}{w_{kg} - w} + \frac{e(w_{kg} + w)t''}{w_{kg} + w} \right]$ 2 nd order 6 $b(t) = \sum_{K} \frac{-c}{\pi} \int W_{fK}(e^{i\omega t'' - i\omega t''}) b_{K}^{(i)} t'' e^{i\omega t''}$

$$f_{f}^{(2)} = \frac{-i}{\hbar} \int_{K}^{t} W_{fk} \left(\frac{i(w_{fk} - w')t'' i(w_{fk} + w')t''}{2\hbar} \right) \left(\frac{-1}{2\hbar} \right) \left($$

leads to resonance when $W_{fic} + W_{kg} = W + W'$ $W_{fic} + W_{kg} = W_f - W_k + W_k - W_g = W_f - W_g.$ 1.P. $\Delta E = h(W + W')$

Kramers-Heigenberg-Dirac Formula.