3. Linear Variation Method Boot Camp

For a case of 3 basis functions it looks like this:

$$
\begin{aligned}
& \left(H_{11}-S_{11} E\right) C_{1}+\left(H_{12}-S_{12} E\right) C_{2}+\left(H_{13}-S_{13} E\right) C_{3}=0 \\
& \left(H_{21}-S_{21} E\right) C_{1}+\left(H_{22}-S_{22} E\right) C_{2}+\left(H_{23}-S_{23} E\right) C_{3}=0 \\
& \left(H_{31}-S_{31}\right) C_{1}+\left(H_{32}-S_{32} E\right) C_{2}+\left(H_{33}-S_{33} E\right) C_{3}=0
\end{aligned}
$$

$\mathrm{H}_{\mathrm{ij}}=$ Hamiltonian matrix
$\mathrm{S}_{\mathrm{ij}}=$ Overlap matrix

Linear Variation with 2 orthonormal, real, basis functions

$$
\begin{array}{r}
\Psi=\mathrm{c}_{1} \Phi_{1}+\mathrm{c}_{2} \Phi_{2} \\
\left(\mathrm{H}_{11}-\mathrm{E}\right) \mathrm{c}_{1}+\quad \mathrm{H}_{12} \mathrm{c}_{2}=0 \\
\mathrm{H}_{21} \mathrm{c}_{2}+\left(\mathrm{H}_{22}-\mathrm{E}\right) \mathrm{c}_{2}=0
\end{array}
$$

where $\mathrm{H}_{12}=<\Phi_{1}|\mathrm{H}| \Phi_{2}>$, the "interaction" of the two basis functions,
$\mathrm{H}_{11}=<\Phi_{1}|\mathrm{H}| \Phi_{1}>$, the "energy" of Φ_{1},
$\left.\mathrm{H}_{22}=<\Phi_{2}|\mathrm{H}| \Phi_{2}\right\rangle$, the "energy" of Φ_{2},
and $\mathrm{E}=\langle\Psi| \mathrm{H}|\Psi\rangle$. the expectation value of the energy using the trial function.

For a non-trivial solution (c_{1} and c_{2} not both zero), the determinant of the matrix of numbers multiplying the coefficients c_{1} and c_{2} must vanish, i.e.,
$\left(\mathrm{H}_{11}-\mathbf{E}\right)\left(\mathrm{H}_{22}-\mathbf{E}\right)-\mathrm{H}_{21} \mathrm{H}_{12}=0$ quadratic equation; Solve for \mathbf{E}

$$
\begin{gathered}
\mathrm{E}^{2}-\mathrm{E}\left(\mathrm{H}_{11}+\mathrm{H}_{22}\right)+\left(\mathrm{H}_{11} \mathrm{H}_{22}-\mathrm{H}_{21} \mathrm{H}_{12}\right)=0 \text { quadratic } \\
E_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{\left(H_{11}+H_{22}\right) \pm \sqrt{\left(H_{11}+H_{22}\right)^{2}-4\left(H_{11} H_{22}-H_{21} H_{12}\right.}}{2} \\
E_{ \pm}=\frac{H_{11}+H_{22}}{2} \pm \sqrt{\left(\frac{H_{11}-H_{22}}{2}\right)^{2}+H_{12}^{2} \quad \text { Because } H_{12} \text { is real }}
\end{gathered}
$$

$$
\begin{array}{r}
H=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1} & \beta \\
\beta & \alpha_{2}
\end{array}\right) \\
E=\frac{\left(\alpha_{1}+\alpha_{2}\right)}{2} \pm \sqrt{\frac{\left(\alpha_{1}-\alpha_{2}\right)^{2}}{2}+|\beta|^{2}}
\end{array}
$$

Thus, we can already see that E must be either more positive than either α_{1} and α_{2} or more negative than both α_{1} and α_{2}. That is

This is ALWAYS the case. Now, back to the quadratic formula, you can see how it says the same thing and also that the splitting is symmetrical and increases as β increases - - independent of the sign of β. Also note that if ϕ_{1} and ϕ_{2} are degenerate, i.e., if $\alpha_{1}=\alpha_{2}$, then
the splitting is just 2β and $\mathrm{E}=\alpha \pm \beta$.

Case of Two Orthonormal Functions

Solving for $\Psi=\mathrm{c}_{1} \Phi_{1}+\mathrm{c}_{2} \Phi_{2}$ means solving for $\mathbf{c}_{\mathbf{1}}$ and $\mathbf{c}_{\mathbf{2}}$

$$
\begin{array}{ll}
\left(\mathrm{H}_{11}-E\right) c_{1}+\left(\mathrm{H}_{12}\right) \mathrm{c}_{2} & =0 \\
\left(\mathrm{H}_{21}\right) \mathrm{c}_{1}+\left(\mathrm{H}_{22}-E\right) \mathrm{c}_{2} & =0
\end{array}
$$

$$
=\left\{\begin{array}{l}
\left(\alpha_{1}-E\right) c_{1}+\beta c_{2}=0 \\
\beta c_{1}+\left(\alpha_{2}-E\right) c_{2}=0
\end{array}\right.
$$

Solving for C_{1} and c_{2}

You might think that, with two equations and two unknowns, you could solve for both c_{1} and c_{2}; not so. There are actually three equations since $c_{1}^{2}+c_{2}^{2}=1$ for normalization. The other two are not independent. From them you can only get the ratio of ${ }^{\mathrm{C}} 1 / \mathrm{c}_{2}$. You may use either equation and you will get the same result for ${ }^{C} 1 / c_{2}$, even though it doesn't "look" like you would.

$$
\frac{c_{1}}{c_{2}}=\frac{-\beta}{\alpha_{1}-E}=\frac{\alpha_{2}-E}{-\beta}
$$

The determinant from the \mathbf{N} simultaneous homogeneous equations $=0$ is a constraint that means that you can only solve for the ratio of the coefficients.

Case of Two Orthonormal Functions

$$
\begin{aligned}
& \left(\alpha_{1}-E\right) c_{1}+\beta c_{2}=0 \\
& \beta c_{1}+\left(\alpha_{2}-E\right) c_{2}=0
\end{aligned}
$$

The determinant from the \mathbf{N} simultaneous homogeneous equations $=0$ is a constraint that means that you can only solve for the ratio of the coefficients.

First Eq.: $\left(\alpha_{1}-E\right) c_{1}=-\beta c_{2}$
$\frac{c_{1}}{c_{2}}=\frac{-\beta}{\left(\alpha_{1}-E\right)}$

Second Eq.: $\beta c_{1}=-\left(\alpha_{2}-E\right) c_{2}$
$\frac{c_{1}}{c_{2}}=\frac{-\left(\alpha_{2}-E\right)}{\beta}$
$\frac{c_{1}}{c_{2}}=\frac{-\beta}{\left(\alpha_{1}-E\right)}=\frac{-\left(\alpha_{2}-E\right)}{\beta} \quad$ because:
$\left(\alpha_{1}-E\right)\left(\alpha_{2}-E\right)-\beta \beta=0=$ determinant $=0$
2) If the interaction is negative, i.e..

If H_{12} is negative the lower-energy eigenvector coefficients have same signs and those for
the higher energy are opposite in sign. Vice versa if the interaction is positive.
If H_{12} POSITIVE, then lower-energy eigenvector coefficients have opposite signs

$$
\begin{array}{ll}
\frac{c_{1}}{c_{2}}=\frac{-\beta}{\left(\alpha_{1}-E\right)} & \text { Denominator is + for lower state } \\
\frac{c_{1}}{c_{2}}=\frac{-\left(\alpha_{2}-E\right)}{\beta} & \text { Numerator is + for upper state higher } E>\alpha_{2}
\end{array}
$$

The sign of β depends only on the phases chosen arbitrarily for the basis set, because:
the Hamiltonian is ALWAYS NEGATIVE in quantum chemistry, due to Coulomb's Law and electrons seeking to be near positive nuclear charge.
4) If the energies of the basis functions (the diagonal elements) are not equal,
the lowest-energy eigenvector will be mostly the lower-energy basis function and the higher energy eigenvector will be mostly the higher energy basis function.

$$
\begin{aligned}
& \frac{\alpha_{2} \ldots \sqrt{\frac{\alpha_{1}+\alpha_{2}}{2}} \ldots E_{2} \cdot \frac{\alpha_{2}-\alpha_{1}}{1}}{} \\
& E=\frac{\left(\alpha_{1}+\alpha_{2}\right)}{2} \pm \sqrt{\frac{\left(\alpha_{1}-\alpha_{2}\right)^{2}}{2}+|\beta|^{2}} \\
& E_{2}-\alpha_{2}=\frac{\left(\alpha_{1}+\alpha_{2}\right)}{2}-\alpha_{2} \pm \sqrt{\frac{\left(\alpha_{1}-\alpha_{2}\right)^{2}}{2}+|\beta|^{2}} \\
& E_{2}-\alpha_{2}=\frac{\left(\alpha_{1}-\alpha_{2}\right)}{2} \pm \sqrt{\frac{\left(\alpha_{1}-\alpha_{2}\right)^{2}}{2}+|\beta|^{2}} \\
& \text { Raising: } E_{2}-\alpha_{2} \\
& \text { Lowering: } \alpha_{1}-E_{2} \\
& \frac{c_{1}}{c_{2}}=\frac{-\beta}{\left(\alpha_{1}-E\right)} \\
& \text { are NEVER larger than }|\beta| \text { as shown by } \\
& c_{\text {low }}{ }^{2} \geq c_{\text {high }}{ }^{2} \text { for lower energy state } \\
& \frac{c_{1}}{c_{2}}=\frac{-\left(\alpha_{2}-E\right)}{\beta} \\
& c_{\text {high }}{ }^{2} \geq c_{\text {low }}{ }^{2} \text { for higher energy state }
\end{aligned}
$$

3. Linear Variation Method
(c) Demonstrate the following general facts concerning linear variation calculations for two orthogonal basis functions. Give at least two numerical examples for each case.
1) One of the eigenvalues is always lower than the lowest diagonal element; the other is always higher than the highest diagonal element, no matter what the sign of the interaction (off-diagonal element). In other words, mixing always pushes the two states apart.
2) If the interaction is negative, the lower-energy eigenvector coefficients are the same sign and those for the higher energy are opposite in sign. Vice versa if the interaction is positive.
3) When the diagonal elements are equal (degenerate) the two basis functions are mixed equally, no matter what the interaction is (provided it is not zero) and the eigenvalues are equal to the diagonal element \pm the off diagonal element.
4) If the energies of the basis functions (the diagonal elements) are not equal, the lowest-energy eigenvector will be mostly the lower-energy basis function and the higher energy eigenvector will be mostly the higher energy basis function.
5) The farther apart in energy the two basis functions are, the less they mix (assuming a constant interaction).
6) The larger the magnitude of the interaction, the more the mixing (assuming a constant diagonal energy difference).
7) Adding a constant to both diagonal element shifts the eigenvalues by this constant and has no effect on the eigenvectors. (This is known as shifting the zero of energy.)

To find the eigenvalues and eigenvectors either use the equation in part 1 or use a computer program, e.g. from the internet:
http://www.colby.edu/chemistry/PChem/eigen.html,
http://www.bluebit.gr/matrix-calculator/ , etc. 010001
101000
010100
001010
000101
100010

8) Perturbation limit:

$$
\left(\begin{array}{cc}
\alpha_{1} & \beta \\
\beta & \alpha_{2}
\end{array}\right)
$$

For the matrix above, where $\alpha_{1}<\alpha_{2}$ and $|\beta| \ll\left(\alpha_{2}-\alpha_{1}\right)$, and where
$\psi_{1}=\mathrm{c}_{11} \Phi_{1}+\mathrm{c}_{21} \Phi_{2}$, and $\psi_{2}=\mathrm{c}_{12} \Phi_{1}+\mathrm{c}_{22} \Phi_{2}$, show that:

$$
\begin{aligned}
& E_{1}=\alpha_{1}-\frac{\beta^{2}}{\alpha_{2}-\alpha_{1}} ; c_{11} \approx 1, c_{21} \approx \frac{-\beta}{\alpha_{2}-\alpha_{1}} \\
& E_{2}=\alpha_{2}+\frac{\beta^{2}}{\alpha_{2}-\alpha_{1}} ; c_{12} \approx \frac{\beta}{\alpha_{2}-\alpha_{1}}, c_{22} \approx 1
\end{aligned}
$$

From this point on we will DIAGONALIZE the H matrix to get the eigenvalues and eigenvectors (coefficients)

From this point on we will DIAGONALIZE the H matrix to get the eigenvalues and eigenvectors (coefficients)

Matrices

It is virtually impossibe to deal with these problems without using matrices. Consider the matrix

$$
\mathbb{H}=\left(\begin{array}{lll}
\mathrm{H}_{11} & \mathrm{H}_{12} & \mathrm{H}_{13} \\
\mathrm{H}_{21} & \mathrm{H}_{22} & \mathrm{H}_{23} \\
\mathrm{H}_{31} & \mathrm{H}_{32} & \mathrm{H}_{33}
\end{array}\right)
$$

Note how the subscripts say row - column. The lst subscript tells you which row the element is in; the 2nd tells which column. Now we want to restate the set of equations

$$
\begin{aligned}
& \left(\mathrm{H}_{11}-\mathrm{E}\right) \mathrm{c}_{1}+\mathrm{H}_{12} \mathrm{C}_{2}+\mathrm{H}_{13} \mathrm{C}_{3}=0 \\
& \mathrm{H}_{21} \mathrm{C}_{1}+\left(\mathrm{H}_{22}-\mathrm{E}\right) \mathrm{c}_{2}+\mathrm{H}_{23} \mathrm{C}_{3}=0 \\
& \mathrm{H}_{31} \mathrm{C}_{1}+\mathrm{H}_{32}-\mathrm{C}_{2}+\left(\mathrm{H}_{33}-\mathrm{E}\right) \mathrm{c}_{3}=0
\end{aligned}
$$

as $\mathrm{H}_{11} \mathrm{C}_{1}+\mathrm{H}_{12} \mathrm{C}_{2}+\mathrm{H}_{13} \mathrm{C}_{3}=\mathrm{Ec}_{1}$
$\mathrm{H}_{21} \mathrm{C}_{1}+\mathrm{H}_{22} \mathrm{C}_{2}+\mathrm{H}_{23} \mathrm{C}_{3}=\mathrm{EC}_{2}$
$\mathrm{H}_{31} \mathrm{C}_{1}+\mathrm{H}_{32} \mathrm{C}_{2}+\mathrm{H}_{33} \mathrm{C}_{3}=\mathrm{EC}_{3}$

$$
\text { as } \begin{aligned}
\mathrm{H}_{11} \mathrm{C}_{1}+\mathrm{H}_{12} \mathrm{C}_{2}+\mathrm{H}_{13} \mathrm{C}_{3}=\mathrm{Ec}_{1} \\
\mathrm{H}_{21} \mathrm{C}_{1}+\mathrm{H}_{22} \mathrm{C}_{2}+\mathrm{H}_{23} \mathrm{C}_{3}=\mathrm{Ec}_{2} \\
\mathrm{H}_{31} \mathrm{C}_{1}+\mathrm{H}_{32} \mathrm{C}_{2}+\mathrm{H}_{33} \mathrm{C}_{3}=\mathrm{Ec}_{3}
\end{aligned}
$$

or $\left(\begin{array}{lll}H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33}\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=E\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

This results from the rule for matrix nultiplication AB=C which says, for example: the element in the 2nd row and 3rd column of $\mathbf{C}_{\mathrm{f}}\left(\mathrm{C}_{23}\right)$, is determined by the dot product (also called inner product and scalar product) of the 2 nd row of \mathbf{A} and the 3 rd column of \mathbf{B}.

$$
C_{23}=\left(\begin{array}{lll}
A_{21} & A_{22} & A_{23}
\end{array}\right)\left(\begin{array}{l}
B_{13} \\
B_{23} \\
B_{33}
\end{array}\right)=A_{21} B_{13}+A_{22} B_{23}+A_{23} B_{33}
$$

Notice how the outside indices are always 23 and the inside ones are always the same and range from 1 to N (the dimension of the matrix). In a more compact notation:

$$
c_{i j}=\sum_{k=1}^{N} A_{i k} B_{k j}
$$

At any rate the matrix equation

$$
\|-\left\lvert\,\binom{ c_{11}}{c_{21}}=E_{1} \quad\binom{c_{11}}{c_{21}}=\binom{c_{11} E_{1}}{c_{21} E_{1}}\right.
$$

says that the column of coefficients is the eigenvector of the Hamiltonian matrix, H, with eigenvalue, E_{1}. Likewise $\left.H\binom{C_{12}}{C_{22}}=c_{12} E_{2} C_{32} E_{2}\right)$
Putting them together gives

$$
\begin{aligned}
& H /\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\left(\begin{array}{ll}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right) \\
& \text { H } \mathbf{C}=\mathbf{C E}
\end{aligned}
$$

We will be seeing computer output in which the molecular orbitals are given as a "C" matrix; the columns of the matrix, the eigenvectors, are the coefficients of the AO's. The MO, ψ, is given as $\psi=c_{1}$

Diagonalizing a matrix to get eigenvalues and eigenvectors

$$
\begin{aligned}
& \mathrm{C}^{-1} \mathrm{HC}=\mathrm{C}^{-1} \stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{E} \\
& \mathrm{E}
\end{aligned}=\mathrm{IE}=\mathrm{E}
$$

where, E is a diagonal matrix that has the eigenvalues on the diagonal.

$$
\begin{aligned}
& E=E_{1} 000 \ldots \\
& 0 \mathrm{E}_{2} 00 \\
& 00 E_{3} 0 \text {... }
\end{aligned}
$$

For a real, symmetric matrix: $C^{-1}=C^{\text {TRANSPOSE }}$
For a Hermitian matrix:

$$
\mathrm{C}^{-1}=\mathrm{C}^{\mathrm{ADJOINT}}=\left[\mathrm{C}^{\mathrm{TRANSPOSE}}\right]^{*}
$$

