A quick example of a Non-Linear Variation is using the exact form of the ground state wavefunction for a hydrogen-like atom or ion.

$$
\begin{aligned}
& H=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{Z e^{2}}{r}=-\frac{1}{2} \nabla^{2}-\frac{Z}{r} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{2 r^{2}} \frac{L^{2}(\theta, \varphi)}{}
\end{aligned}
$$

If we didn't know that $\varphi_{0}=e^{-\frac{Z r}{a}}=e^{-Z r}$ in atomic units, then we might guess that:

$$
\phi_{\text {trial }}=e^{-\frac{\alpha r}{a}}=e^{-\alpha r} \text { in atomic units }
$$

$$
\frac{\int \varphi_{\text {trial }}^{*} H \varphi_{\text {trial }} d \tau}{\int \varphi_{\text {trial }}^{*} \varphi_{\text {trial }} d \tau}=\langle E\rangle
$$

$$
d \tau=r^{2} d r \sin \theta d \phi
$$

$$
\langle E\rangle=\frac{\int e^{-\alpha r} H e^{-\alpha r} d \tau}{\int e^{-\alpha r} e^{-\alpha r} d \tau}=\frac{\int e^{-\alpha r}\left(-\frac{\partial^{2}}{2 \partial r^{2}}-\frac{\partial}{r \partial r}-\frac{Z}{r}\right) e^{-\alpha r} 4 \pi^{2} r^{2} d r}{\int e^{-2 \alpha r} 4 \pi^{2} r^{2} d r}
$$

$$
\begin{aligned}
& \langle E\rangle=\frac{\int e^{-\alpha r} H e^{-\alpha r} d \tau}{\int e^{-\alpha r} e^{-\alpha r} d \tau}=\frac{\int e^{-\alpha r}\left(-\frac{\partial^{2}}{2 \partial r^{2}}-\frac{\partial}{r \partial r}-\frac{Z}{r}\right) e^{-\alpha r} 4 \pi^{2} r^{2} d r}{\int e^{-2 \alpha r} 4 \pi^{2} r^{2} d r} \\
& =\frac{-\frac{\alpha^{2}}{2} \int e^{-2 \alpha r} r^{2} d r+\alpha \int e^{-2 \alpha r} r d r-Z \int e^{-2 \alpha r} r d r}{\int e^{-2 \alpha r} r^{2} d r}
\end{aligned}
$$

$\int_{0}^{\infty} r^{n} e^{-b r} d r=\frac{n!}{b^{n+1}}$
For $\mathrm{n}=1: \frac{1!}{b^{1+1}}=\frac{1}{b^{2}}=\mathrm{b}^{-2} \quad$ units $=$ length 2
For $\mathrm{n}=2: \frac{2!}{b^{2+1}}=\frac{2}{b^{3}}=2 \mathrm{~b}^{-3} \quad$ units $=$ length ${ }^{3}$

$$
\begin{aligned}
& \int_{0}^{\infty} r^{n} e^{-b r} d r=\frac{n!}{b^{n+1}} \\
& \text { For } \mathrm{n}=1: \frac{1!}{b^{1+1}}=\frac{1}{b^{2}}=\mathrm{b}^{-2} \quad \text { units }=\text { length }^{2} \\
& \text { For } \mathrm{n}=2: \frac{2!}{b^{2+1}}=\frac{2}{b^{3}}=2 \mathrm{~b}^{-3} \quad \text { units }=\text { length }^{3} \\
& \int_{0}^{\infty} e^{-2 \alpha r} r^{2} d r=\frac{2}{(2 \alpha)^{3}}=2(2 \alpha)^{-3} \\
& \int_{0}^{\infty} e^{-2 \alpha r} r d r=(2 \alpha)^{-2} \\
& \frac{-\alpha^{2} / 2 \int_{0}^{\infty} e^{-2 \alpha r} r^{2} d r+\alpha \int_{0}^{\infty} e^{-2 \alpha r} r d r-Z \int_{0}^{\infty} e^{-2 \alpha r} r d r}{\int_{0}^{\infty} e^{-2 \alpha r} r^{2} d r} \\
& \frac{\left(-\alpha^{2} / 2\right) 2(2 \alpha)^{-3}+\alpha(2 \alpha)^{-2}-Z(2 \alpha)^{-2}}{2(2 \alpha)^{-3}}=-\alpha^{2} / 2+(\alpha / 2) 2 \alpha-Z \alpha \\
& \langle E\rangle=\alpha^{2} / 2-Z \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \langle E\rangle=\frac{\alpha^{2}}{2}-Z \alpha=T_{\text {approx }}+V_{\text {approx }} \\
& \frac{\partial\langle E\rangle}{\partial \alpha}=\frac{2 \alpha}{2}-Z=\alpha-Z=0
\end{aligned}
$$

Therefore, the value of α giving the lowest (or highest) $=Z$, which we know is also the exactly correct solution.

Note: Because $1 \mathrm{~s}(\mathrm{r})=$ proportional to $\mathrm{e}^{-\alpha r}, \alpha$ has units of length ${ }^{-1}$ and α^{2} has units of length ${ }^{-2}$, i.e., the same units as $-\frac{\hbar^{2} \partial^{2}}{2 m \partial r^{2}}$ in atomic units.

The He Atom
Another interesting example is the He atom. Consider the simple
product function,

$$
\psi=N e^{-\alpha r_{1}} e^{-\alpha r_{2}}
$$

The energy obtained with various wavefunctions are as follows:

4	E	This assumes the presence
$\alpha=2$ (the right value for $\mathrm{He}+$)	-2.75	another electron does not affect the size of the orbital
$\alpha=1.6875^{*}$	-2.848	Lowest E by varying α
Hartree SCF (table of numbers)	-2.86	This means use $\Psi=f\left(r_{1}\right) \mathbf{f}\left(r_{2}\right)$ with
Exact (Experiment)	-2.90	NO restrictions on the shape $f(r)$

The Hartree SCF wavefunction, whose only restriction is that
$\psi=$ product of orbitals $\phi_{15}(1) \quad \phi_{1 s}(2)$ and allows any shape whatsoever for $\phi_{/ s}$, cannot give the right answer! This proves, to me anyway, that we must think of the electrons in atoms as point charges which do dodge one another because of the repulsion. The motion is correlated; they, to some extent, stay on opposite sides of the atom. By doing so, the energy is lowered by $.04 \mathrm{a} . \mathrm{u} .={ }^{\sim} \mathrm{lev}=23 \mathrm{kcal} / \mathrm{mole}$.

That is called the correlation energy and is never accounted for by a single configuration, product-of-orbitals type wavefunction. In the

Chemistry literature you will more and more run into the term configuration-interaction (CI). The reason is that, by making a linear combination of configurations, electron correlation is introduœd. That is by using

and varying the coefficients, $c_{1}, c_{2}, c_{3} \ldots$, one may obtain the exact energy if enough configurations are used. This is also known as mixing configurations.

Linear Variation Method

The vast majority of variation calculations done by chemists involve the linear variation method, an example of which was just given. It is also the basis for constructing molecular orbitals (MO's) from atomic orbitals (AO's). The general idea is to construct 4 as

$$
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\cdots .
$$

and find the "best" ψ by varying the c_{i} 's until the energy is a minimum. The ϕ_{i} 's are called the basis set or the basis functions. They are usually AO's if constructing MO's, or configurations if constructing a many-electron wavefunction. They obviously must all be the same thing (you can't add apples and oranges).

You are going to be asked to develop an "intuition" about doing
linear variation calculations involving just two basis functions, a
little like learning the multiplication table (and certainly not more
difficult.

Only by doing this will you start to feel comfortable with quantum chemistry.

Your goal is to become so familiar with the pattern of results that they become simple truths to you. You will be able to predict the nature of mixing of wave functions, and splitting of energy levels.

The General Form -
Well, almost general. We will work only with real functions to make the notation easier . We said

$$
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\ldots .
$$

We need to write

$$
E=\frac{\int \psi \psi \psi d v}{\int \psi \psi d v}
$$

as a function of the c_{i} 's and then minimize E with respect to varying each c_{i}. Unique values of the c_{i} 's are not found, but a unique ratio of c_{i} 's is found. All this means is that the resulting $\psi /$ will not necessarily be normalized; we can Mormalize easily if you know the ratio of c_{i} 's. Thus, substituting for ψ

$$
E=\frac{\int\left(c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\ldots\right) \lambda\left(c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{1}+\ldots\right)}{\int\left(c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\ldots\right)^{2} d v}
$$

Now define $H_{i j}=\int \phi_{i} \cdot 2 / \phi_{j} d v$

$$
\text { and } s_{i j}=\int \phi_{i} \phi_{j} d v
$$

$H_{i j}$ is called the Hamiltonian matrix element between ϕ_{i} and ϕ_{j} it is also referred to as the interaction between ϕ_{i} and ϕ_{j}. $s_{i j}$, you should recognize as the overlap integral of ϕ_{i} and ϕ_{j}. With these definitions we get:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{c}_{1} \mathrm{c}_{1} \mathrm{H}_{11}+\mathrm{c}_{2} \mathrm{C}_{2} \mathrm{H}_{22}+\mathrm{c}_{3} \mathrm{C}_{3} \mathrm{H}_{33}+\ldots . \cdot \\
& +\mathrm{c}_{1} \mathrm{C}_{2} \mathrm{H}_{12}+\mathrm{c}_{1} \mathrm{C}_{3} \mathrm{H}_{13}+\mathrm{c}_{2} \mathrm{C}_{3} \mathrm{H}_{23}+\ldots \cdot \cdot \\
& +\mathrm{c}_{2} \mathrm{C}_{1} \mathrm{H}_{21}+\mathrm{C}_{3} \mathrm{C}_{1} \mathrm{H}_{31}+\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{H}_{32}+\ldots \text { all divided by: } \\
& \mathrm{c}_{1} \mathrm{c}_{1} \mathrm{~S}_{11}+\mathrm{c}_{2} \mathrm{C}_{2} \mathrm{~S}_{22}+\mathrm{c}_{3} \mathrm{c}_{3} \mathrm{~S}_{33}+\ldots . \cdot . \cdot \\
& +\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~S}_{12}+\mathrm{c}_{1} \mathrm{c}_{3} \mathrm{~S}_{13}+\mathrm{c}_{2} \mathrm{c}_{3} \mathrm{~S}_{23}+\ldots . . . \cdot \\
& +\mathrm{c}_{2} \mathrm{C}_{1} \mathrm{~S}_{21}+\mathrm{c}_{3} \mathrm{C}_{1} \mathrm{~S}_{31}+\mathrm{c}_{3} \mathrm{c}_{2} \mathrm{~S}_{32}+\ldots . . .
\end{aligned}
$$

But, since we are using real functions $S_{12}=S_{21}$ and $H_{12}=H_{21}$ so we can rewrite E as

$$
\begin{aligned}
\mathrm{E} & =\frac{\mathrm{c}_{1}^{2} \mathrm{H}_{11}+\mathrm{c}_{2}^{2} \mathrm{H}_{22}+\ldots \cdot+2 \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{H}_{12}+2 \mathrm{c}_{1} \mathrm{c}_{3} \mathrm{H}_{13}+\cdots}{\mathrm{c}_{1}^{2} \mathrm{~S}_{11}+\mathrm{c}_{2}^{2} \mathrm{~S}_{22}+\ldots \cdot \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~S}_{12}+2 \mathrm{c}_{1} \mathrm{c}_{3} \mathrm{~S}_{13}+\ldots \cdot} \\
& =\frac{\mathrm{Top}}{\text { Bottom }}
\end{aligned}
$$

Now we wish to find the slope of E with respect to each c_{i} and set it

$$
=0^{*}, \text { i.e., } \quad \frac{\partial E}{\partial} c_{i}=0 \text { for each } c_{i}
$$

But recall the formula for the derivative of a quotient:

$$
\begin{aligned}
& \frac{\partial \mathrm{E}}{\partial{c_{i}}_{\text {Bottan }}}=\frac{1}{\partial{c_{i}}^{\text {Bop }}}+\operatorname{Top} \frac{\partial \frac{1}{\text { Bottom }}}{\partial{c_{i}}}=0 \\
& =\frac{1}{\text { Bottom }} \frac{\partial \text { Top }}{\partial c_{i}}-\frac{\text { Top }}{(\text { Bottom })^{2}} \frac{\partial \text { Bottom }}{2 c_{i}}=0
\end{aligned}
$$

5 Thus is the condition for the Energy to by a minimums. 6
and after multiplying by Bottom on both sides and recognizing that

$$
\mathrm{E}=\frac{\text { Top }}{\text { Bottom }}
$$

we get:

Now note that $\frac{\partial \mathrm{Top}}{\partial \mathrm{C}_{1}}=2 \mathrm{H}_{11} \mathrm{c}_{1}+2 \mathrm{H}_{12} \mathrm{C}_{2}+2 \mathrm{H}_{13} \mathrm{C}_{3}+\ldots$.
or $\quad \frac{\partial \mathrm{Top}}{\partial \mathrm{C}_{i}}=2 \mathrm{H}_{\mathrm{il}} \mathrm{C}_{1}+2 \mathrm{H}_{\mathrm{il}} \mathrm{C}_{2}+2 \mathrm{H}_{\mathrm{i} 3} \mathrm{C}_{3}+\ldots$.
and likewise for

Now, after dividing by 2 on both sides, one has n equations of the form: $H_{i 1} \mathrm{c}_{1}+\mathrm{H}_{\mathrm{i} 2} \mathrm{C}_{2}+\ldots \ldots \mathrm{H}_{\mathrm{in}} \mathrm{C}_{\mathrm{n}}-\mathrm{E}\left(\mathrm{S}_{\mathrm{il}} \mathrm{C}_{1}+\mathrm{S}_{\mathrm{i} 2} \mathrm{C}_{2}+\ldots . \mathrm{S}_{\mathrm{in}} \mathrm{C}_{\mathrm{n}}\right)=0$ for $\mathrm{i}=1$ to n

This may be compacted slightly as $\sum_{j}\left(H_{i j}-E S_{i j}\right) c_{j}=0$
for $\mathrm{i}=1$ to n

For a case of 3 basis functions it looks like this:

$$
\begin{aligned}
& \left(H_{11}-S_{11} E\right) C_{1}+\left(H_{12}-S_{12} E\right) C_{2}+\left(H_{13}-S_{13} E\right) C_{3}=0 \\
& \left(H_{21}-S_{21} E\right) C_{1}+\left(H_{22}-S_{22} E\right) C_{2}+\left(H_{23}-S_{23} E\right) C_{3}=0 \\
& \left(H_{31}-S_{31}\right) C_{1}+\left(H_{32}-S_{32} E\right) C_{2}+\left(H_{33}-S_{33} E\right) C_{3}=0
\end{aligned}
$$

Almost always we will use an orthonormal basis set, which means: $S_{i i}=1$ and $S_{i j}=0$ if minot equal j

$$
\begin{array}{ll}
\left(\mathrm{H}_{11}-E\right) c_{1}+\left(\mathrm{H}_{12}\right) c_{2}+\left(\mathrm{H}_{13}\right) c_{3}=0 \\
\left(\mathrm{H}_{21}\right) \mathrm{c}_{1}+\left(\mathrm{H}_{22}-E\right) c_{2}+\left(\mathrm{H}_{23}\right) c_{3} & =0 \\
\left(\mathrm{H}_{21}\right) \mathrm{c}_{1}+\left(\mathrm{H}_{32}\right) \mathrm{c}_{2}+\left(\mathrm{H}_{33}-E\right) c_{3} & =0
\end{array}
$$

A set of N simultaneous homogeneous linear equations THIS IS WHAT YOU WANT TO MEMORIZE!

Case of Two Orthonormal Functions

Now if we choose $\psi=c_{1} \oint_{1}+c_{2} \quad \emptyset_{2}$ for such a basis we immediately know to write:

$$
\begin{aligned}
\left(H_{11}-E\right) c_{1}+H_{12} C_{2} & =0 \\
H_{21} C_{1}+\left(H_{22}-E\right) c_{2} & =0
\end{aligned}
$$

We shall call $H_{12}=H_{21}=\beta$ and $H_{11}=\alpha_{1}, H_{22}=\alpha_{2}$ and for these discussions pick $\alpha_{1}<\alpha_{2}$.

$$
\begin{aligned}
& \left(H_{11}-E\right) c_{1}+\left(H_{12}\right) c_{2}=0 \\
& \left(H_{21}\right) c_{1}+\left(H_{22}-E\right) c_{2}=0
\end{aligned}=\begin{aligned}
& \left(\alpha_{1}-E\right) c_{1}+\beta c_{2}=0 \\
& \beta c_{1}+\left(\alpha_{1}-E\right) c_{2}=0
\end{aligned}
$$

Language: $\boldsymbol{\alpha}_{1}$ is called the "energy of $\varphi_{1}, \boldsymbol{\alpha}_{2}$ is called the "energy of φ_{2} and β is the "interaction of φ_{1} and φ_{1}

What is always the requirement to solve set of N simultaneous homogeneous linear equations?

THE DETERMINANT of the MATRIX OF NUMBERS MULTIPLYING THE COEFFICIENTS MUST = 0

$$
\begin{aligned}
& \text { or }\left(\alpha_{1}-E\right)\left(\alpha_{2}-E\right)-\beta^{2}=0 \\
& \text { or } E^{2}-\left(\alpha_{1}+\alpha_{2}\right) E+\alpha_{1} \alpha_{2}-\beta^{2}=0 \\
& \text { or } a E^{2}+b E+c=0
\end{aligned}
$$

The quadratic formula then says

$$
E=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{\left(\alpha_{1}+\alpha_{2}\right)}{2} \pm \frac{1}{2} \sqrt{\left(\alpha_{1}+\alpha_{2}\right)^{2}-4 \alpha_{1} \alpha_{2}+4 \beta^{2}}
$$

which can be shown to be

$$
E=\frac{\alpha_{1}+\alpha_{2}}{2} \pm \sqrt{\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right)^{2}+\beta^{2}}
$$

$$
E=\frac{\alpha_{1}+\alpha_{2}}{2} \pm \sqrt{\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right)^{2}+\beta^{2}}
$$

Making the transformation to this very useful form will be part of the next homework.

What does it tell you when the two energies are degenerate?
the splitting is just 2β and $\mathrm{E}=\alpha \pm \beta$.

$$
E=\frac{\alpha_{1}+\alpha_{2}}{2} \pm \sqrt{\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right)^{2}+\beta^{2}}
$$

What if α_{1} and α_{2} different?
What if α_{1} and α_{2} different?

$$
E=\frac{\alpha_{1}+\alpha_{2}}{2} \pm \sqrt{\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right)^{2}+\beta^{2}}
$$

What if α_{1} and α_{2} different?

Always!

The next homework will teach you more details, and on a couple quizzes you will be asked to solve 3 of these 2×2 in a few minutes-after a training session or two - .

