Wavefunctions are "representations of bra and ket vectors": Wed 23jan19

Expanding arbitrary state functions as linear combinations of the complete set of eigenfunctions of an *observable*, dynamical variable operator A:

An arbitrary state vector |f > may be expressed as a superposition (linear combination) of members of a complete set: $|f\rangle = \sum_{k} c_{kf} |k\rangle$ $\hat{A}|k\rangle = a_{k}|k\rangle$, where a_{k} are the eigenvalues of \hat{A} , and $c_{kf} = \langle k|f\rangle$

The numbers c_{kf} are said to be: " |f > in the A representation".

One may, of course, use any other complete set to "represent" | f >. For example, the c_{kf} from the complete set using the eigenfunctions of the Hermitian operator, d^2/dx^2 , i.e., sin(kx) and cos(kx), is the Fourier representation, better known as the Fourier Transform.

The set of numbers $\langle \mathbf{k'} | \mathbf{B} / \mathbf{k} \rangle$ is similarly said to be the operator \mathbf{B} in the A representation.

The Identity operator

Given that the c_{kf} are numbers = $\langle k | f \rangle$

$$|f\rangle = \sum_{k} c_{kf} |k\rangle = \sum_{k} |k\rangle c_{kf} = \sum_{k} |k\rangle \langle k|f\rangle$$
$$|f\rangle = \sum_{k} |k\rangle \langle k|f\rangle = \left(\sum_{k} |k\rangle \langle k|\right) |f\rangle$$

Thus, $\sum_{k} |k\rangle \langle k| = \hat{I}$, the very widely used "Identity" operator

Next, we introduce the special complete set known as the "position" eigenfunctions.

564-19 Lec 6

Position Eigenfunctions

The position operator x_{op} is simple multiplication by the position x. The eigenfunctions are *the ingenious and* widely used **Dirac delta functions** = $\delta(\mathbf{x}-\mathbf{a})$, where a is a real number; it has the properties:

$$\delta(x-a) = 0 \quad \text{if } x \neq a$$

$$\delta(x-a) = \infty \quad \text{if } x = a = \text{a series of infiitely high, infinitely narrow peaks.}$$

but normalized so that:

$$\int_{-\infty}^{\infty} \delta(x-a) dx = 1$$

 $\hat{x}\delta(x-a) = a\delta(x-a)$ i.e., $\delta(x-a)$ is an eigenfunction of \hat{x} with eigenvalue=a

To rationalize the normalization, one may think of the function near x=a to be very large but finite in a very narrow, but finite, region such that area under the curve = 1.

Thus expanding $|\Psi\rangle$ in the eigenfunctions of x, i.e., the Dirac delta functions, changes $|\Psi\rangle$ into the wavefunction

$$\Psi(x) = \text{limit of } \sum_{a} \langle \delta(x-a) | \Psi \rangle$$
 as x and *a* become continuous
 $\Psi(x) = " | \Psi \rangle$ in the position representation"

Wavefunctions are state kets in the position representation

Theorems

Theorem 1. The eigenvalues of an Hermitian operator are real numbers

Theorem 2. The *eigenfunctions* of an Hermitian operator are orthogonal—unless the eigenvalues are degenerate. They can be made orthogonal, however

Theorem 3. A trivial result of Theorems 1 and 2. If *A* is Hermitian and if $g_1, g_2, ...$ are a complete set of eigenfunctions of *A* and if *A*F=kF, then if F is expanded as: $F = \sum_{i=1}^{n} a_i g_i$

the only non-zero coefficients, a_i will for those g_i which also have eigenvalue= k

Theorem 4. If linear operators *A* and *B* have a common complete set of eigenfunctions, then *A* and *B* commute, i.e, $AB \Psi = BA \Psi$

Theorem 5. If linear operators *A* and *B* commute, then a common complete set of eigenfunctions can be constructed for them. **Example**?

For spherical systems: H, L^2 , and L_z operators all commute; thus n, l, m

and Group Theory: Symmetry operations all commute with *H*.

Theorem 6. If g_m and g_n are eigenfunctions of Hermitian operator A with different eigenvalues, and if the linear operator B commutes with A, then

$$\langle g_m | B | g_n \rangle = 0$$
 for $a_n \neq a_m$

Theorem 7. When the potential energy V is an *even* function, we can choose the stationarystate wave functions so that each Ψ_i is **either** an *even* function **or** an *odd* function

This means that *H* commutes with the symmetry operator called *inversion*. *Even* and *odd* parity simply means eigenvalues of *inversion* = +1 or -1

Theorem 8. If $Bg_m = b_m g_m$ and $\Psi = \sum_i c_i g_i$

then if B is measured at time t when the state function is given by Ψ , the probability of observing the result b_m is given by $|c_m|^2$ (or the sum of $|c_m|^2$ for the degenerate states for which $c_m = b_m$.)

Theorem 9. The probability of measuring the value $\mathbf{b}_{j} = \left| \left\langle g_{j} | \Psi \right\rangle \right|^{2}$

Postulates

Postulate 1. The state of a system is described by a function $\Psi(\langle r \rangle, t)$, where $\langle r \rangle$ stands for all 3N coorinates of the N particles, and t is the time. $\Psi(\langle r \rangle, t)$ is called the state function or wavefunction, and contains all the information that can be determined about the system.

 Ψ must be single-valued, continuous, and quadratically integrable.

For continuum states (unbound), the quadratically integrable requirement is omitted

Postulate 2. To every physically observable property there corresponds a linear Hermitian operator, where Cartesian x_{op} = multiply by x and momentum, p_x is given by

$$p_x = -i\hbar \frac{\partial}{\partial x}$$

Postulate 3. The only possible result from a measurement of property *B*, corresponding to operator *B*, are the eigenvalues of *B*.

Postulate 4. If B is a linear Hermitian operator that represents a <u>physical property</u>, the eigenfunctions g_i of B form a complete set

(This must be a <u>postulate</u> because it <u>can't be proven</u>, and there are Hermitian operators whose eigenfunctions do not form compete set!)

Postulate 5. The average (or expectation value) of a property B is given by $\int_{all \ space} \Psi^* B \Psi d\tau = \langle \Psi | B | \Psi \rangle$

Postulate 6. The time dependent Schrodinger Equation:

$$\frac{\partial}{\partial t}\Psi = -\frac{i}{\hbar}H\Psi \qquad \text{or, } i\hbar\frac{\partial}{\partial t}\Psi = H\Psi \qquad \text{or, } -\frac{\hbar}{i}\frac{\partial}{\partial t}\Psi = H\Psi$$

"The" Variation Principle and Variation Methods

One cannot overemphasize the immense importance of "the" variation principle to quantum chemistry, but it is equally important in numerous other fields, many of them in non-quantum engineering applications. It turns out that eigenvalues and eigenvectors always emerge when a differential equation is subjected to boundary conditions.

Schrödinger himself invoked a variation principle to support his formulation of the Schrödinger Equation.

Quoting from <u>https://en.wikipedia.org/wiki/Variational_principle</u>: A **variational principle** is a scientific principle used within the <u>calculus of variations</u>, which develops general methods for finding functions which extremize the value of quantities that depend upon those functions. "For example...the shape of a chain suspended at both ends... is found by minimizing the gravitational potential energy"

Examples

- •Lord Rayleigh's variational principle
- •Ekeland's variational principle
- •Fermat's principle in geometrical optics
- •The principle of least action in mechanics, electromagnetic theory, and guantum mechanics
- •Maupertuis' principle in classical mechanics
- •The Einstein equation also involves a variational principle, the Einstein-Hilbert action
- Gauss's principle of least constraint
- •Hertz's principle of least curvature
- Palatini variation
- •The variational method in quantum mechanics
- •The finite element method

The Variation Principle of Quantum Systems

$$\frac{\int \phi_{trial}^{*} H \phi_{trial} \, d\tau}{\int \phi_{trial}^{*} \phi_{trial} \, d\tau} = \langle E \rangle \ge E_{0}$$

The power of the variation principle is that *any* approximate wavefunction for the ground state of a quantum system is *guaranteed* to give an energy expectation value, $\langle E_{approx} \rangle$, that will be <u>higher than the true ground</u> state energy, $E_{0.2}$

This allows one to vary the "shape" of the trial wavefunction by **any** means available, until the derivative of $\langle E_{approx} \rangle$ with respect to all variables being varied = 0, simultaneously, and thus be satisfied that this will be the most accurate wave function of the type being used as φ_{trial} .

There is no danger of finding an energy that is too low!

In addition to the above **"wavefunction"** scheme, Kohn and Sham shared the Nobel Prize recently for proving and helping implement the so **called density functional theory (DFT)**.

With **DFT**, one directly varies the electron density $\phi^*_{trial} \phi_{trial}$ to reach the energy minimum, instead of varying ϕ_{trial} , which must always be squared to get the energy anyway.

There are different variation methods which can be classified into two broad classes: (1)linear variation method, and (2) non-linear variation methods. We will begin with simple examples of the **non-linear variation method**, Then **spend much time on the linear variation method**, which pervades most of the computational methods we will encounter in chemistry.

A quick example is using the exact form of the ground state wavefunction for a hydrogen-like atom or ion. +2 =7

$$H = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{r} = -\frac{1}{2} \nabla^2 - \frac{Z}{r}$$

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{2r^2} \frac{L^2(\theta, \varphi)}{r}$$
if we don't know that $\varphi_0 = e^{-\frac{Zr}{a}} = e^{-Zr}$ in atomic units
We guess that:

$$\phi_{trial} = e^{-\frac{\alpha r}{a}} = e^{-\alpha r}$$
 in atomic units

$$\frac{\int \varphi_{trial}^* H \varphi_{trial} d\tau}{\int \varphi_{trial}^* \varphi_{trial} d\tau} = \langle E \rangle$$

 $d\tau = r^2 dr \sin\theta \ d\phi$

$$\left\langle E\right\rangle = \frac{\int e^{-\alpha r} H e^{-\alpha r} d\tau}{\int e^{-\alpha r} e^{-\alpha r} d\tau} = \frac{\int e^{-\alpha r} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{Z}{r}\right) e^{-\alpha r} 4\pi^2 r^2 dr}{\int e^{-2\alpha r} 4\pi^2 r^2 dr}$$

$$\langle E \rangle = \frac{\int e^{-\alpha r} H e^{-\alpha r} d\tau}{\int e^{-\alpha r} e^{-\alpha r} d\tau} = \frac{\int e^{-\alpha r} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{Z}{r} \right) e^{-\alpha r} 4\pi^2 r^2 dr}{\int e^{-2\alpha r} 4\pi^2 r^2 dr}$$
$$\int_0^\infty r^n e^{-br} dr = \frac{n!}{b^{n+1}}$$
For n = 1 : $\frac{1!}{b^{1+1}} = \frac{1}{b^2}$ units = length²
For n = 2 : $\frac{2!}{b^{2+1}} = \frac{2}{b^3}$ units = length³

Next slide from C:\514\514H1-12.zip\514H10.pdf October 1985

Example: Hydrogen-like ion with charge Z

If you assume that $\frac{4}{15} = e$ as a trial function then $E_{approx} = \frac{\int e^{-\chi r} + e^{-\chi r}}{\int e^{-2\chi r} dv} = T_{approx} + V_{approx}$ $= \frac{\chi^2}{2} - \chi^2$

in a.u.

where $T_{dpp\mu_{0x}} = \frac{\chi^2}{Z}$; $V_{dpp\nu_{0x}} = -\chi Z$

To find \land which gives the minimum energy find \lor for which slope of $E(\land) = 0$

$$\frac{dE(\alpha)_{approx}}{d\alpha} = 0 = \frac{d\left(\frac{\alpha^2}{2} - \alpha Z\right)}{d\alpha} = \alpha - Z$$

So $\alpha = \mathbf{Z}$ as you know, is the best form for the hydrogen 1s, and this is the exact answer since we lucked out and guessed the exponential $-\kappa r^2$ form. If we pick $\psi_{approx} = e$ we can find a

minimum energy, but it will be higher than $-\frac{1}{2}$ a.u., the exact value.