
Wavefunctions are “representations of bra and ket vectors”:
Expanding arbitrary state functions as linear combinations of the complete set of 
eigenfunctions of an observable, dynamical variable operator A:

An arbitrary state vector |f > may be expressed as a superposition (linear combination) of members 
of a complete set:

Given that the  are numbers  kf
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Next, we introduce the special complete set known as the “position” eigenfunctions.

The numbers ckf are said to be:  “ |f > in the A representation”.  
One may, of course, use any other complete set to “represent”  | f >.  For example, the ckf from the 
complete set using the eigenfunctions of the Hermitian operator, d2/dx2 , i.e., sin(kx) and cos(kx), is 
the Fourier representation, better known as the Fourier Transform.  
The set of numbers <k’|B|k> is similarly said to be the operator B in the A representation.

The Identity operator
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Position Eigenfunctions
The position operator xop is simple multiplication by the position x.  The eigenfunctions are the ingenious and
widely used Dirac delta functions =  δ(x-a), where a is a real number; it has the properties: 

( ) 0   if x
( )   if x = a series of infiitely high, infinitely narrow peaks.

but normalized so that:

( ) 1

ˆ ˆ( ) ( ) i.e., ( )is an eigenfunction of with eigenvalue=
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To rationalize the normalization, one may think of the function near x=a to be very large but finite in a very 
narrow, but finite, region such that area under the curve = 1.

Thus expanding |Ψ> in the eigenfunctions of x, i.e., the Dirac delta functions, changes |Ψ> into the wavefunction

( ) limit of ( )  as x and  become continuous.

( ) "  in the position representation"
a

x x a a

x

δΨ = − Ψ

Ψ = Ψ

∑

Wavefunctions are state kets in the position representation
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Theorem 1.  The eigenvalues of an Hermitian operator are real numbers

Theorem 2.  The eigenfunctions of an Hermitian operator are orthogonal—unless
the eigenvalues are degenerate.  They can be made orthogonal, however

Theorem 3.   A trivial result of Theorems 1 and 2.
If A is Hermitian and if g1, g2, .... are a complete set of eigenfunctions of A and
if AF=kF , then if F is expanded as: 

the only non-zero coefficients, ai will for those gi which also have eigenvalue= k

Theorem 4.   If linear operators A and B have a common complete set of 
eigenfunctions, then A and B commute, i.e,  AB Ψ = BA Ψ

Theorem 5. If linear operators A and B commute, then a common complete set of 
eigenfunctions can be constructed for them.  Example?
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Theorems

i i
i

F a g=∑

For spherical systems:  H, L2, and Lz operators all commute;  thus n, l, m

and Group Theory:  Symmetry operations all commute with H.
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Theorem 7. When the potential energy V is an even function, we can choose the stationary-
state wave functions so that each Ψi is either an even function or an odd function 

Theorem 8.

then if B is measured at time t when the state function is given by Ψ, 
the probability of observing the result bm is given by |cm|2
( or the sum of |cm|2 for the degenerate states for which cm = bm .)

If andm m m i i
i

Bg b g c g= Ψ =∑

Theorem 9. The probability of measuring the value bj =
2

jg Ψ

Theorem 6.   If gm and gn are eigenfunctions of Hermitian operator A with different 
eigenvalues,  and if the linear operator B commutes with A , then  

0 for am n n mg B g a= ≠

This means that H commutes with the symmetry operator called inversion.
Even and odd parity simply means eigenvalues of inversion = +1 or -1 
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Postulates
Postulate 1. The state of a system is described by a function Ψ(<r>,t ), where 
<r> stands for all 3N coorinates of the N particles, and t is the time. Ψ(<r>,t ) is 
called the state function or wavefunction, and contains all the information that can
be determined about the system.  

Ψ must be single-valued, continuous, and quadratically integrable.

For continuum states (unbound), the quadratically integrable requirement is omitted 

Postulate 2. To every physically observable property there corresponds a linear 
Hermitian operator, where Cartesian xop = multiply by x and momentum, px is given by

xp i
x
∂

= −
∂
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Postulate 4.  If B is a linear Hermitian operator that represents a physical property, 
the eigenfunctions gi of B form a complete set

(This must be a postulate because it can’t be proven, and there are Hermitian operators
whose eigenfunctions do not form compete set!)

Postulate 3.  The only possible result from a measurement of property B, 
corresponding to operator B,
are the eigenvalues of B.

Postulate 5. The average (or expectation value) of a property B is given by

i H
t
∂
Ψ = − Ψ

∂ 

Postulate 6.  The time dependent Schrodinger Equation:

*

all space
B d BτΨ Ψ = Ψ Ψ∫

or , H
i t
∂

− Ψ = Ψ
∂



or, i H
t
∂
Ψ = Ψ

∂


6



“The” Variation Principle and Variation Methods
One cannot overemphasize the immense importance of “the” variation principle to quantum chemistry, 
but it is equally important in numerous other fields, many of them in non-quantum engineering applications.
It turns out that eigenvalues and eigenvectors always emerge when a differential equation is subjected to boundary 
conditions.  
Schrödinger himself invoked a variation principle to support his formulation of the Schrödinger Equation.

Quoting from https://en.wikipedia.org/wiki/Variational_principle: A variational principle is a scientific principle 
used within the calculus of variations, which develops general methods for finding functions which extremize the 
value of quantities that depend upon those functions. “For example...the shape of a chain suspended at both 
ends... is found by minimizing the gravitational potential energy”

Examples
•Lord Rayleigh's variational principle
•Ekeland's variational principle
•Fermat's principle in geometrical optics
•The principle of least action in mechanics, electromagnetic theory, and quantum mechanics
•Maupertuis' principle in classical mechanics
•The Einstein equation also involves a variational principle,  the Einstein–Hilbert action
•Gauss's principle of least constraint
•Hertz's principle of least curvature
•Palatini variation
•The variational method in quantum mechanics
•The finite element method
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The Variation Principle of Quantum Systems
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The power of the variation principle is that any approximate wavefunction for the ground  state of a quantum 
system is guaranteed to give an energy expectation value, <Eapprox> , that will be higher than the true ground 
state energy, E0..

This allows one to vary the “shape” of the trial wavefunction by any means available,
until the derivative of <Eapprox> with respect to all variables being varied = 0, simultaneously, 
and thus be satisfied that this will be the most accurate wave function of the type being used as ϕtrial .  

There is no danger of finding an energy that is too low!

In addition to the above “wavefunction” scheme, Kohn and Sham shared the Nobel Prize recently for proving 
and helping implement the so called density functional theory (DFT). 
With DFT, one directly varies the electron density ϕ*trial ϕtrial to reach the energy minimum, instead of varying 
ϕtrial , which must always be squared to get the energy anyway.

There are different variation methods which can be classified into two broad classes: (1)linear variation method, 
and (2) non-linear variation methods.  We will begin with simple examples of the non-linear variation method, 
Then spend much time on the linear variation method, which pervades most of the computational methods we 
will encounter in chemistry.   
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A quick example is using the exact form of the ground state wavefunction for a 
hydrogen-like atom or ion.

We guess that: 
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Next slide from C:\514\514H1-12.zip\514H10.pdf October 1985
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