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Virial Theorem Wed 16jan19

Levine pp 416-426 and
https://en.wikipedia.org/wiki/Virial _theorem

From Wikipedia, the free encyclopedia In mechanics, the virial theorem provides
a general equation that relates the average over time of the total kinetic energy,
of a stable system consisting of N particles, bound by potential forces, with that
of the total potential energy where angle brackets represent the average over
time of the enclosed quantity. Mathematically, the theorem states

where F, represents the force on the kth particle, which is located at position r,.
The word virial for the right-hand side of the equation derives from vis, the Latin
word for "force" or "energy", and was given its technical definition by Rudolf
Clausius in 1870.1

The virial theorem applies to ALL stable systems, classical
and quantum.
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Rudolf Claussius (wikipedia)

1850, first stated the basic ideas of the Second Law of
Thermodynamics.

In 1865 he introduced the concept of entropy.

In 1870 he introduced the virial theorem which applied to heat.

The virial theorem applies to ALL stable systems,
classical and quantum.

For example, Fritz Zwicky in ~1930 was the first to use
the virial theorem to deduce the existence of unseen
matter, which is now called dark matter — still a major
mystery in astrophysics.
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Major bottom line:

When the potential energy, V, due to interaction of any two
particles is proportional to ", then: <T> =% n <V>.

For a harmonic oscillator, V=1/2 kx2, n=2 so that
<T> =<V>, again in either classical or qguantum mechanics.

For Coulomb and gravitational, energy, n = -1, therefore
<T>=-<V> e,

-<V/>/<T> = 2 for all atoms and molecules, the motions of
the planets, etc.



Our Main Interest:
In Quantum Chemistry, obeying of the virial theorem is checked at each
iteration of ab initio SCF energy computations at each geometry of an

optimization to ensure that - <V>/<T> =2 asseenina
piece of typical output from Gaussian 09:

Initial guess from the checkpoint file: "9H-2ap.chk"
B after Tr= 0.000000 0.000000 0.000000

Rot= 1.000000 0.000000 0.000000 0.000150 Ang= 0.02 deg.
Keep R1 ints in memory in canonical form, NReq=13642697.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -461.898845425 A.U. after 10 cycles

NFock= 10 Conv=0.66D-08 -V/T=2.0019 < Obeys virial theorem

Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 11Cent= 0 I0pCIX= 0 NMat=1 NMatS=1 NMatT=0.
kakk*k Axes restored to original set *****

Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
1 7 -0.000241441 -0.000077968 0.000305746

2 6 0.000214225 0.000060731 -0.000156949 4
2 1 0 NONDANDQE _0 DONNNKLAE22Q N NNONNONERNE



H -Atom Orbitals and Nodal Properties

http://www.orbitals.com/orb/orbtable.htm

David Manthey's Grand Orbital Table



http://www.orbitals.com/orb/orbtable.htm
http://www.orbitals.com/orb/orbtable.htm

Spherical Harmonics: Curvature, Kinetic Energy,
and Orbital Nodes in Spherical systems

http://www.falstad.com/gmatom/ Levine: ppl102, 107-110
Chem 514 Handout #7 October, 1985
More on Atomic Orbitals

D.T Nature of the solutions |

We won't be concerned with the details of "solving" the Schrodinger
Fquation for the H atom in this course, but, it's not too hard to show
that one may break it down into 3 separate equations, each depending on

only one of the 3 variables r, & , and [ﬁ Whenever this hapens, one

finds that the well behaved solutions (the orbitals) are|products of 3

functions, each depending on only r, © or ¢| and each orbital is

characterized by 3 integer quantum numbers, n, 1, and m, (3 because

space is 3-dimensional).


http://www.falstad.com/qmatom/
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- Why does R (r) depend
1 F () @ @) @ @) ||, the total angular
” &m A momentum qyantym number?

20+ | tm
0 : = L ("P’\Oo w‘:) P Cos0) (&

N R,(r) is the product of
y 2041 a polynomial (which
L L/'_t—\; , ( L (D e j ‘ Y(_@, ¢ provides NODES, and
® “x projection of r vector n+-Q 9w and and tial
on the xy plane =rsinf exponential,
) which has no nodes.
The ?& are the famous associated Legendre polynomials

each has powers of cos ® in it. The product of the two angular parts

is the same for|every spherical problemlv not just for quantum mechanics

of atoms. Thus it's given a special name and symbol.

\6‘5’;‘“> = SPHERTCAL, HARMONICS
"

LT

The R,gf) describes the Radial Motion (in and out). The Lm.‘iare the famous

associated| Laguerre Polynomials.| All these equaticns and solutions were

known and solved by mathematicians in the 1800's or earlier. This should

serve to make the distinction between theory and mathematics. The same

math appears in many different theories. What Schroedinger did was

discover how to map physical reality onto existing mathematics.



Effective Potential Energy (includes pseudo potential)
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Angular kinetic energy

(a “pseudo potential”). Its
derivative gives “centrifugal
force”.



http://bison.ph.bham.ac.uk/index.php?page=bison,background

The Sun is a sphere. Below are calculations of the nodal
patterns of seismic waves in the Sun, published by an
Astrophysics group at the University of Birmingham in England.

These nodes depend on
the I, and m quantum

numbers of Y,m(G,(p)
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Plots of the radial factor of y, R(r)

0.7
0.6

2s: 1 nodes

2p: 0 nodes

3s: 2 nodes

FIGURE 6.8 Graphs of the
radial factor R;(r) in the
hydrogen-atom (Z = 1)
wave functions. The same
scale is used in all graphs.

(In some texts, these func-
tions are not properly drawn
to scale.)

»ﬁp: 1 nodes 134 3d: 0 nodes
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140 Chapter6 = The Hydrogen Atom

possible values of 6 and ¢, keeping r fixed. This amounts to integrating (6.115) over 6 and
I ¢. Hence the probability of finding the electron between rand r + dr is

2w -
[Rutr) ] d"f f 176, ) | sin0 dd dp = [Ry(r)]FPdr  6.116)
0 0

since the spherical harmonics are normalized:

/j\)f,"‘(ﬁ,gb)\%inedemb:] | 6.117)
H 40 ] i

as can be seen from (5.72) and (5.80). The function R*(r)r?, which determines the probabil-
ity of finding the electron at a distance r from the nucleus, is called the radial distributiom
function; see Fig. 6.9.

For the 1s ground state of H, the probability density |42 is from Eq. (6.104) equal
| to e 214 times a constant, and so | ¢, |? is a maximum at r = 0 (see Fig. 6.14). However.
the radial distribution function [Ry,(r)]%r? is zero at the origin and is a maximum a8
r = a (Fig. 6.9). These two facts are not contradictory. The probability density |¢|% s
proportional to the probability of finding the electron in an infinitesimal box of volume
dx dy dz, and this probability is a maximum at the nucleus. The radial distribution fune~
tion is proportional to the probability of finding the electron in a thin spherical shell of
| inner and outer radii r and r + dr, and this probability is a maximum at r = a. Since ¥y,
l ‘ depends only on r, the 15 probability density is essentially constant in the thin spherical

shell. If we imagine the thin shell divided up into a huge number of infinitesimal boxes
each of volume dx dy dz, we can sum up the probabilities |, | 2 dx dy dz of being in

FIGURE 6.9 Plots of the

radial distribution function
[Ru(r) 1% for the hydrogen 0.5
atom.
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Complex H Wavefunctions

2p 4= 2p, —i2p,
2p,=2p, +i2p,

Eigenfunctions of L, operator
L, |2p.>=-1|2p,> m=-1
L, |2p,>=+1 |2p;> m=+1

TABLE 6.2 Real Hydrogenhke Wave Functions
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Fig. 4-2. Graphs of radial wave functions, R, (r) (dashed lines), and distribution
[unctions, r?R2,(r) (solid lines), for the hydrogen atom. Units of R are m™?2
230

und units of 72 R* are m !, Vertical lines murk the average value of r foran electron
in cach orbital.
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Shapes of nodes

cones on z axis
0 nodes (radial nodes): shape =? (includes the xy plane,

a cone with 6 =90)

I’ rnodes (radial nodes): shape =? spherical

¢ Y
~
SN e
N

(P \\

¢ nodes (radial nodes): shape =? planes CONTAINING z axis

i.e., perpendicular to xy plane
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2. \ The @ Equat'j.on}
Its fairly easy to show that > @ = —a

d—

J)sp"

—th

and that @=Ne

me= 0' :1' 12' evssvese

Integer values come from requirement that (Zb () = @C@f-lﬂ)
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The significance is found from noting that
Fany),

Ly E (7P )‘k Angylan
“uEm JE = Kinetic energy
Z/q (r si176) -

due to motion around the z axis, i.e., that in xy plane.

Examine the Schroedinger Equation and note that

Ly = -T2

AP*

L= —<h e

Note the parallel to linear momentum.

. C:(”%: d?m - W\X/\ Q"“\

and qu are eigenfunctions of (f - with eigenvalues m’t\ o

SO
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Chemistry 557 (1197) " Bandout 18

=2, | Ihe e E:ms:r.maj .
They are the associated Legendre palynamials and have the form:

- I

Imi 0 —Awmal Qdwal -2 [Lg
Pm - —'(C, Coso + 0, Cos® *‘----)%W‘e
£

{(Cose) —

when these functions change sign the node is a cone, in general. The
cones are about the z axis and come in pairs except the @ = 90° case,

which is a flattened cone (the xy plane). Thus, for 4f, m=o0 |,

iml o 3
P P & S Cose — Co%8
4 3
=
there are 3 conical nodes +
— Y
. A X

We will see that / , the total angular momentum quantum number has the
very neat significance:

r,f = # of angular nodes_}
so#of © nodes= Z - |m|, i.e., the largest power of cos & in

the polynamial.

/| The & Rewtion 2ud Buncrion |

Looking at the Schrodinger Bquation from Handout #6 we can see
‘Tradia_}_ +V(r) + Tang LPnlm = En anlm

Where Tang = Cf(e)!b) 2“ r:' . .

After operating on LP nlm bY Tang the equation becames
R 2.

2
— DA
T - 2E o« A

g 2/4;’7'
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Thus, the size of an orbital o<C _ﬂi , which is sensible. But one

may also find E from, E= Y = — R % in agreement with the
hz '2/.[ d.
uncertainty principle. Comparing the two formulas shows that
2. z ' z
Z p at == oY \ Go = __
‘ -
s\ ° ME
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since H = rr) @e©) CE @) ~ the nodal surfaces

correspond to

What are the
formulas for the
number of each

r = const. = sghere

© = const. = cone (aboot D

‘\b = const. = planes 1 to xy
type of node and
Let us now tabulate the first sewveral orbitals and learn the formulas
the total number of
for number of each kind of node. Examine functions on p 23 of Murrell, )
. nodes?
et al.
n l_ m name r nodes ©nodes Q5nodes Total
1 0 0 1s 0 0 0 0
2 0 0 2s 1 0 0 1
2 1 0 2pz 0’ 1 0 1
2 1 1 2 Px,y 0 0 1 1
3 0 0 3s 2 1} 0 2
3 1 o 3pz 1 1 0 2
3 1 1 3px,y 1 i 3 1 2
3 2 0 3d, 0 2 0 2
3 2 1 Mgz O 1 1 2
3 2 2 3dxy'xa_yz 0 0 * 2 2
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The cbvious relationships hoid true for all cases:

total nodes = -l

number of ©® nodes = m

total angular nodes = X '

number of © nodes = f-im\
nu:;ber'ofrnodes = n- g -1

Thus, a 4f orbital with m = 2 has 3 nodes total. But ,Q = 3 s0 there

2 d) nodes and 1 © node and there are no therical(r) nodes  Ths orbits

looks like : Z
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special note on DRAUWING ATOMIC ORBITALS

The following procedure is suggested as the best way
to display the nodal patterns of atomic orbitals.

(1)First make two perspective drawings of the
orbital values on a spherical shell at a distance beyond
the last r node. One of these should be looking down the 2
axis, the other from the side so as to show all of the
planar nodes. These two will show the number of conical
and planar nodes but will not show the spherical(r) nodes.

(2) Now draw a crossection through the center
which cuts between two planar nodes. This will display the
cones again and will also show the spherical nodes. The
planes will not be seen on this view,

EXAMPLE:n=10,1=?,m=2 , i.e., a 10] orbital.

total nodes= ¢ (n-1)
planes = 2
cones =3
spheres = 2



special note on DRAWING ATOMIC ORBITALS

The following procedure is suggested as the best way
to display the nodal patterns of atomic orbitals.

(1)First make two perspective drawings of the
orbital values on a spherical shell at a distance beyond
the last r node. One of these should be looking down the z
axis, the other from the side so as to show all of the
planar nodes. These two will show the number of conical
and planar nodes but will not show the spherical(r) nodes.

(2) Now draw a crossection through the center
which cuts between two planar nodes. This will display the
cones again and will also show the spherical nodes. The
planes will not be seen on this view.

EXAMPLE:n=10,1=7,m=2 , i.e., a 10J orbital.

total nodes= ¢ (n-1)
planes = 2
cones =93
spheres = 2
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