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What is this equation? oY
E =Tot. energy, V=potential energy @XZ 2m

= Z0e(V —E)

2
what is this equation? Y h

h O°W
— o o +V(X)¥Y =EY¥Y Both are exactly the
e OX 1 D Schroedinger Eq.

The FIRST way talks to you:
What does it say?
It says: The fractional curvature is proportionalto V—-E =-T

Rewrite in “Atomic Units”

In atomic units and oW _ VP ="

P
& =2V ~E)



Atomlc UnltS chmy 564-19 Lec 3

Mon. 14jan19
Fundamental

h/2r =hbar = 1 = 1.054571726(47)x1073 J-s

mass = mass of electron = m_= 1 = 9.10938291(40)x10731 kg

charge = charge of proton=e = 1 =1.602176565(35)x1071° C

electric constant! k =1 = (4ngy)* = 8.9875517873681x10° kg-m3-s72-C~2

Derived and often used:

length = bohrradius =a,=1=5.2917721092(17)x10"" m

energy = e?/a;=1 hartree = 1.602176565E-19"2/ 5.2917721092E-11
= 4.35974E-18 J/molecule =2.625499E+03 kJ/mol = 627.509 kcal-mol~?



Typical Exam problem in this course:

1. For the one-dimensional potential for a certain particle below, draw qualitatively the 3
lowest energy well-behaved energy eigenfunctions separately on the abscissas provided
below. For full credit, the sign of the curvature must be correct at all points, as
prescribed by the respective energy eigenvalues of these states shown by the dotted lines. In
addition, other general aspects associated with the lowest 3 energy eigenfunctions of any
system should be apparent in your drawing.

E; /

-/
o _/

Negative e hore

1 5M5:-ﬂ-f£/f‘l‘“ )
fractional \/f\ (el s bmal.
Pax) —L | :

Negative
fractional
curvature




electron in a finite square well = 1 bohr radius

V = potential energy
Region 1 Region 2
E ----------------
V=0 '
05 0) 0.5
n’ |
- Y"+V¥ =EY¥Y What is the Kinetic Energy sign
Me in region 2 where V > E
—%‘P'HLV‘P = EWY in atomic units
1¥" ineti bvious| ive KE wh
EET E -V =T = Kinetic Energy Obviously negative KE w

This is called tunneling



regionl: V(x)=0soV-E=-E
¥,"= 2E¥Y =

¥, (X) = ae™™* + be"
we choose ¥, (x) = cos(k,x) or sin(k;x)

K, =+2E

region 2. V(x)=Vand V>E
¥, "=2(V -E)¥, V>E
\PZ(X) _ Ce—kZ(X—O.5) n dekz(X—O.S)

kz = \/2(\/ -E)
\PZ(X) — Ce—\/M(X—O-Q n de\/M(x—O.S)




Boundary Conditions for even case
cos(k10_5)zce—kz(0-5—0-5) 4+ Je*(05-05)

=cos(k,0.5)=c + d (Eq.1)
kptimes Eq. 1. k,cos(k,0.5)=k,c + k,d

1. Equal amplitudes at x =0.5 :

2. Equal slopes at x =0.5 : —k, sin(k,0.5) = —k,ce (%709 4 | de/:(0570%)
—k, sin(k,0.5) =-k,c+k,d (Eq.2)

k1=\/(27E) k2=\/2(\/—E)

2 equations and 2 unknowns, cand d

k, .
Subtract Eq. 2 from k,times Eq. 1, solve forc  © =1/ 2{cos(k10.5) +k—15|”(k10-5}
2

K, .
Add Eq.2 to k,times Eq. 1, solve ford d=1/ Z{COS(k10-5)—k—15m(k10-5}

2



Boundary Conditions for odd case (sin)
1. Equal amplitudes at x =0.5 : sin(k,0.5) = ae (09709 4 pelt(09°09)
=sin(k,0.5)=a + b (Eq.1)
k,sin(k,0.5)=k,a + k,b (ktimesEq.1)

2. Equal slopes at x =0.5 :

2 equations and 2 unknowns, a and b kl = (ZE) 2 = \/2(\/ - E)

k, .
Subtract Eq. 2 from k,times Eq. 1, solve for a a=1/ 2{cos(k10.5)+k—15|n(k10.5}
2

K, .
Add Eq.2 to k,timesEq.1,solveforb b=1/ 2{005(k10-5) —k—15|n(k10-5}

2



Numerical Solution for ground state using excel spreadsheet, which you can
download from our website.
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All are solutions,

and are eigenstates,
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2.4 particle in a Rectangular Well

Consider a particle in a one-dimensional box with walls of finite height (Fig. 2.5a). The
potential-energy functionis V= Y, forx < 0, V=0for0 = x = [, and V = V, for
x = [. There are two cases to examine, depending on whether the particle’s energy E is
less than or greater than V.

I 11 111

x=0 ST \/

(a) (b) (c)

Comments? Is this
curve correct in all details?

10



HARMONIC OSCILLATOR REVIEW

64 Chapter4 | The Harmonic Oscillator

According to (4.22), the classical harmonic oscillator vibrates back and forth between
+ = A and x = —A. These two points are the turning points for the motion. The particle
has zero speed at these points, and the speed increases to a maximum at .x = 0, where the
potential energy is zero and the energy is all kinetic energy. The classical harmonic oscil-
lator spends more time in each of the regions near x = Aand x = —A (where it is moving
the slowest) than it does in the region near x = 0. Problem 4.18 works out the probability
density for finding the classical harmonic oscillator at various locations. (Interestingly, this
probability density becomes infinite at the turning points.)

Quantum-Mechanical Treatment
The harmonic-oscillator Hamiltonian operator is [Eqs. (3.27) and (4.27)]
A a o it 5 B d
H=T+V= 7L77 + 2mrttmed = — (—(—f — o (4.30)
2m dx* 2m

where, (o save time in writing, a was defined as
a = 2mvm/h (4.31)
The Schrisdinger equation Hijp = Ey reads, after multiplication by 2m /9

% + (2mER? — 22 =0 (4.32)
dx
We might now attempt a power-series solution of (4.32). If we do now try a power
series for ¢ of the form (4.4), we will find that it leads to a three-term recursion rela-
tion, which is harder to deal with than a two-term recursion relation like Eq. (4.14). We
therefore modify the form of (4.32) so as to get a two-term recursion relation when we
try a series solution. A substitution that will achieve this purpose is (see Prob. 4.22)
fx) = ey (x). Thus

¥= e 2f(x) (4.33)

This equation is simply the definition of a new function f(x) that replaces yr(x) as the
unknown function to be solved for. (We can make any substitution we please in a differ-
ential equation.) Differentiating (4.33) twice, we have

Bt = e = 2~ af + &) (434)
Substituting (4.33) and (4.34) into (4.32), we find
f(x) = 2axf(x) + (2mEL? — a)f(x) =0 (4.35)

Now we try a series solution for f(x):

flx) = Zeax" (4.36)
n=0
Assuming the validity of term-by-term differentiation of (4.36), we get i
© ® |
Fla) = ey = Enfnx”'J (4.37)
=1 =0

[The first term in the second sum in (4.37) is zero.] Also,

£

£10) = Zaln = Ve = TG +2)0 + Degeax! = Jn+ 2)(n+ Nes®

n=2 i n=0

8
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Quantum-Mechanical Treatment
The harmonic-oscillator Hamiltonian operator is [Egs. (3.27) and (4.27)]

A ~ A ﬁz d2 9 9 5 ﬁz d2 wAR
H=T+V=—2mdx2+2w“vnvf =—§; dxz—ax (4.30)
where, to save time in writing, « was defined as
a = 2mvm/h (4.31)
The Schrodinger equation ﬁt,b = Ei reads, after multiplication by 2m i,
d*y i
57 + (2mER? — ox*)Y = 0 (4.32)

We might now attempt a power-series solution of (4.32). If we do now try a power
series for i of the form (4.4), we will find that it leads to a three-term recursion rela-
tion. which is harder to deal with than a two-term recursion relation like Eq. (4.14). We
therefore modify the form of (4.32) so as to get a two-term recursion relation when we
try a series solution. A substitution that will achieve this purpose is (see Prob. 4.22)
f(x) = e /?f(x). Thus

y = e=lpx) More obvious from 4 33

this equation.

Units of a = length-?

What are the
units of @ ?

Next, show that a2 is the “Bohr radius of the harmonic oscillator”

12



Levine: T
Derivation:
5/2 hv 1
E,=(n+3)hv
h
1 1
En = (n + 2)5 27Z'V = (n + E)ha)
Eo = thw=1kxdo = & o’ X2,
k
3/2 hv “ ;
k = yuw?
,ua)zxstpo = ha)
) ho h
XctpO = 2 =
MO y770]
1/2 hV h f h
Xewo Therefore: X = ,u7
1
Classical Xctp02 h
T turning point, X= X¢no

O in the zero-point energy state
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