
The separability implied by the Born-Oppenheimer (BO) 
wavefunction says that the electrons instantly adjust their 
state to the nuclear zero point motions.

The BO wavefunction is exactly true only if:  
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due to the atomic orbitals effectively floating along with the 
nuclear positions.  The effect is, however, small most of the time.

The effect of the 2nd derivative on the electronic function with 
respect to nuclear positions is called “Born-Oppenheimer 
breakdown”, and 
is responsible for excited state radiationless transitions such as the 
conversion of electron energy into nuclear kinetic energy (heat).  ( 
for example, internal conversion)
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The Born-Oppenheimer wavefunction:                                       

says that the electrons instantly adjust their state to the nuclear 
positions.  
It is interesting to view the Born-Oppenheimer wavefunction as a 
kind of linear combination of the Ψel(qi;Qα).  A wavefunction can 
be thought of as a big vector of numbers, one for each point in 
space.   

The B-O wavefunction has the amplitude for the electrons being 
at points in space when the nuclei are at Qα multiplied by 
ΦN(Qα), the amplitude for the nuclei to be at the points Qα.  

The probability density is therefore:
(probability density for a certain nuclear configuration) x 
(probability density for the electrons when the nuclei are at that 
nuclear configuration) 
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Matrix Elements Between B-O Vibronic States.

State functions of the B-O type are often called vibronic states, because they describe 
both electronic and vibrational coordinates 
We will want to know how to find matrix elements of the Hamiltonian that 

couple different molecular states because we shall see that:

1)perturbations such as vibrations can bring intensity into “forbidden transitions” 

2)the rate of transition between states m and n is proportional to |Hmn|2

Consider a matrix element of the Hamiltonian (but it could be any other operator) coupling 
two B-O states m and n,

Hmn =  <Ψel,m(qi;Qα) ΦN,m (Qα) | H | Ψel,n(qi;Qα) ΦN,n(Qα)>

Since H= H(qi,Qα), and ΨN depends only on Qα, we integrate first only over qi

Hmn(Qα)    = <ΦN,m (Qα)| <Ψel,m(qi;Qα)|H| Ψel,n(qi;Qα)>qi |ΦN,n(Qα) >,

where the subscripts indicate the integration variable.  This gives
Hmn = <ΦN,m (Qα)| H(Qα) |ΦN,n(Qα) >Qα



Hmn = <ΦN,m (Qα)| Hmn(Qα) |ΦN,n(Qα) >Qα

Very often Hmn(Qα) is not very sensitive to Qα , i.e., is essentially constant with the value at 
the equilibrium geometry, Qe. (This is known as the Condon Approximation). Then it 
comes out of the integral to give:

Hmn =  Hmn(Qe)<ΨN,m (Qα) | ΨN,n(Qα)>Qα , so that 

|Hmn |2 =  |Hmn(Qe)|2 <ΦN,m (Qα) | ΦN,n(Qα)>Qα |2 = |Hmn(Qe)2 Fmn

The overlap integral squared of the nuclear wave functions for the two states (in bold) is 
called the Franck-Condon factor, Fmn. 

Fmn = 1 only if the equilibrium nuclear positions and the force constants for stretching and 
bending bonds are the same in states m and n.  

This is seldom the case because when electrons change state, e.g., during absorption of light 
or electron transfer, the electron densities in the bonds change, making the bond lengths 
and/or angles change.



The Independent Harmonic Oscillator Model for ΦN(Qα): Normal Modes 

Just as we take products of orbitals (independent electrons) as a starting point for 
the electronic wavefunction, 
with more than two nuclei, we treat the 3N-6 vibrational coordinates as 
independent harmonic oscillators (3N-5 for linear molecules, which have only two 
rotational degrees of freedom).  

In the limit of harmonic springs connecting neighboring atoms, one can diagonalize 
the mass weighted force-constant matrix and obtain eigenvectors (normal modes 
of vibration, which, describe concerted, correlated independent motion of the 
atoms).  

3N-6 independent oscillators means the wavefunction must be written as 
the product: 3 6
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where ϕvα(Qα) is a harmonic oscillator energy eigenfunction for the 
vibrational coordinate Qα , 
and vα is a harmonic oscillator quantum number for the particular 
vibrational normal mode.



The Franck-Condon factor then separates into a product: Fmn = Π fnm,α

where fnm,α = |<ϕvmα(Qα)| ϕv'nα(Qα)>|2
i.e., the square of the overlap integral of the of the initial 
and final vibrational wavefunctions
recall: ϕvmα(Qα) is a vibrational function of normal coordinate α

m and n label two different electronic states
v and v’ label two different vibrational states
All about a single normal mode of vibration, α
The Franck-Condon factors are most sensitive to the difference in the 
equilibrium nuclear positions between the initial and final states, ∆Qe as will 
be demonstrated in a figure below.

When the vibrational frequency difference is not very different between 
the final and initial states, the FC factors are dominated by ∆Qe.  

For the case of no frequency change it is seen that the ground vibrational 
wavefunction has an overlap =1.0 for the 0-0 transition, 
and exactly 0 for all other vibronic transitions due to the orthogonality the 
harmonic oscillator functions.



UV-Vis Spectrum of a diatomic molecule
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small overlap because negative part
cancels positive part

small overlap  because excited state
potential energy is centered at a
longer equilibrium bond length

LARGEST overlap 
because large 
positive overlap 
and small negative 
part.
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