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Orthogonality and Symmetry Projection Operators 

The "Great Orthogonality Theorem States that the rows 
of characters are orthogonal vectors.

This allows one to project out any symmetry 𝜞𝜞 from 
any one of the basis functions,Φ :

ΨΓ =∑1𝑛𝑛 χ𝜞𝜞𝑖𝑖𝑂𝑂𝑖𝑖 Φ (sum over sym. operators i from 1 to n)
where = 𝑂𝑂𝑖𝑖 is the ith symmetry operation,

and χ𝜞𝜞𝑖𝑖 is the character for the ith operation of 
𝜞𝜞 symmetry. 

564-19 Lec22
Fri 8mar19



2

τd*integral, dipoleion  x transitThe 21 ΨΨ∫
∞

∞−

x

Example: operator x = E1u , and ψ1 is Ag ground state, then  need ψ1 = E1u i.e., 
only transition to  E1u are dipole allowed.  x and y are equivalent.
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Note the orthogonality of the character rows.  
(Be sure to include ALL operators, by noting the numbers preceding each 
operator in the top row.) For example: <B2u|E1u> :
(1)(2) + 2(-1)(1) + 2(1)(-1) + (-1)(-2)  + 3(-1)(0) + 3(1)(0) + (-1)(-2) + 2(1)(-1) + 2(-1)(1) + (1)(2)  + 3(1)(0) + 3(-1)(0)
=  +2      -2               -2             +2           +0            +0            +2         -2             -2             +2        +0             +0 

= 0



EXAMPLE: C3 for the 3 1s atomic orbitals (AOs) on the H atoms 
of the object shown.  (Assume the point group is C3 because the blue object in the 
center is more complicated that it looks.) 
The C3 character table is:

where I is the identity operator, C3
+ is clockwise, and C3

- is counter 
clockwise.  Let the basis set be the 3 1s AOs: φ1 , φ2, and φ3 with 
orientation as shown.

1. Generate a linear combination from this basis set that has "A" symmetry, 
i.e., is a basis for the A irreducible representation.

ΨA = 1I φ1 + 1C3
+ x φ1 + 1C3

- x φ1 = φ1 + φ2 + φ3 (characters in red)

(The same result is obtained operating on φ2 or φ3, obviously.) 3

I C3
+ C3

-

A 1 1 1
E 2 -1 -1
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2. Generate a linear combination from this basis set that has "E" 
symmetry, i.e., is a basis for the E irreducible representation.

Because both the E and the character 2 for the Identity operation 
signify double degeneracy, we need to generate two independent
linear combinations.
ΨE1 = 2 I φ1 + (-1) C3

+ φ1 + (-1)C3
- φ1 = 2 φ1 - φ2 - φ3

ΨE2 = 2 I φ2 + (-1) C3
+ φ2 + (-1) C3

- φ2 = 2 φ2 - φ3 - φ1

[If we operate on φ3 we get ΨE3 =  2 φ3 - φ1- φ2 , but this not independent 
because  ΨE3 = - (ΨE1 + ΨE2)  ]

Now, we calculate the energies of these MO fragments in units of 
H12 by making an H matrix with H11=H22=H33 = 0 and H12 = H13 = 
H23 = -1 and use Colby Diagonalizer

I C3
+ C3

-

A 1 1 1
E 2 -1 -1

Not orthogonal

http://www.math.ubc.ca/%7Eisrael/applet/mcalc/matcalc.html
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0
H=    -1    0

-1    -1    0
From Colby Diag.

Eigenvector 1: E=1
0.707107
-0.707107
0
-------------

Eigenvector 2: E=1
-0.408248
-0.408248
0.816497
-------------

Eigenvector 3: E= -2
0.57735
0.57735
0.57735
-------------

This tells you that ΨA is indeed a normalized version of 
φ1 + φ2 + φ3, and is the lowest energy.   For ΨE1 and ΨE2 

,you indeed find the energy to be degenerate and much 
higher, as it should be because of antibonding.  
One of the eigenvectors is 2 φ3 - φ1 - φ2 , which looks 
like what we got operating on φ3. 

but the other is φ1 - φ2. Where did that come from? 
Two  hidden aspects that are common to programs 
that diagonalize symmetric matrices:
1) All eigenvectors are made orthogonal, even though this 
is not a requirement for degenerate eigenvectors.  
2) I believe that Colby deliberately beutifies the eigenvectors by 
breaking the symmetry such that there is effectively a plane of 
symmetry going through atom 3 and bisecting the 1-2  bond.  
The eigenfuctions functions are perfect (to 5 decimal places) 
eigenfunctions for reflection through that plane with 
eigenvalues +1 and -1.  
This is not the case with all computers.
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Eigenvector 1: Eigenvalue=1
0.816497
-0.408248
-0.408248
-------------
Eigenvector 2: Eigenvalue=1
-1.67295e-8
-0.707107
0.707107
-------------
Eigenvector 3: Eigenvalue=-2
0.57735
0.57735
0.57735
-------------

Another diagonalizer on same matrix with 
perfect symmetry gives these eigenvalues:

-2.0000        1.0000      1.0000 
and eigenvectors:
1    -.577350   .788133  -.213336
2    -.577350  -.578821  -.575875
3    -.577350  -.209312   .789212

The pair of degenerate eigenvectors are UGLY, 
but orthogonal. 
You can show that they form a basis for the E
irreducible representation, creating 2x2 
representative matrices with trace =2, and have the 
correct multiplication properties.

You can beautify these ugly eigenvectors with two
linear combinations that give: 2φ1 - φ2 - φ3 and φ2 - φ3

That will be a future homework problem. 

Colby with H11 = 1 x 10-8



Born-Oppenheimer Approximation
Adiabatic Assumption:  Nuclei move so much more slowly than electron that the 
electrons that the electrons are assumed to be obtained if the nuclear kinetic 
energy is ignored, i.e., solve for the electronic wavefunctions with stationary 
nuclei.

The complete molecular Hamiltonian (neglecting magnetic terms is:
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= TN + Te + VNN + VNe + Vee

Define Hel = Te + VNe + Vee
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The separation of time scales allows the solution of  Hel Ψel,n(qi;Qα) 
=Eel,n(Qα)Ψel,n(qi;Qα) at a set of fixed nuclear configurations, Qα for 
the ground and excited states, n.  Adding on the VNN also a 
function of Qα gives:

Un(Qα)= Eel(Qα) + VNN(Qα) , which serves the potential energy for 
the nuclei.

Un(Qα) are called Born-Oppenheimer potential (energy) surfaces.

The Un(Qα) look like:





One now defines the
nuclear Hamiltonian as  HNn = TN + Un(Qα) 
and solves the nuclear Schrodinger Equations on these surfaces:

HNnφ(Qα)=Enφ(Qα)

The low energy solutions φ(Qα) will look very much like harmonic 
oscillator eigenfunctions:

ΨBO= Ψel,n(qi;Qα) φ(Qα) 

The semicolon in Ψel,n(qi;Qα) means the electronic function 
depends only parametrically on Qα (i.e., does not appear explicitly 
in Ψel,n(qi;Qα).  It nevertheless depends very much on Qα because 
the electron density follows the nuclei.
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