564-19 Lec18 Fri 22feb19

I will be away Mon and Wed (Mar 4 and Mar 6).

There will be a take home Midterm Exam available Friday, Mar 1 and due Friday Mar 8.

TABLE 16.1 H₂O Calculations That Include Correlation^a

Reference ^b	Method ^c /Basis Set	Energy/ <u>E_h</u>	$\mu/{\sf D}$	θ	R _{OH} ≟
Harrison, Handy	CISD/DZ	-76.150			
Harrison, Handy	FCI/DZ	-76.158			
CCCBDB	MP2(FC)/6-31G*	-76.197	2.24	104.0°	0.9 69
CCCBDB	CISD(FC)/6-31G*	-76.198	2.24	104.2°	0.966
CCCBDB	MP2(full)/6-31G*	-76.199	2.24	104.0°	0.9 69
CCCBDB	CCSD(FC)/6-31G*	-76.206	2.25	103.9°	0. 969
CCCBDB	MP4(FC)/6-31G*	-76.207	2.25	103.8°	0.970
CCCBDB	CCSD(T)(FC)/6-31G*	-76.208	2.25	103.8°	0. 971
CCCBDB	MP2(FC)/6-31G**	-76.220	2.20	103.8°	0.961
CCCBDB	CISD(FC)/6-31G**	-76.221	2.19	104.2°	0.9 58
CCCBDB	MP2(FC)/cc-pVDZ	-76.229	2.10	101.9°	0.965
CCCBDB	CCSD(T)(FC)/cc-pVDZ	-76.241	2.10	101.9°	0. 966
Scuseria, Schaefer	CISDTQ/DZP	-76.270	2.13	104.5°	0.963
Schaefer et al.	CISD/TZ2P	-76.312	1.94	104.9°	0.952
CCCBDB	CISD(FC)/cc-pVTZ	-76.314	2.03	104.2°	0.953
CCCBDB	MP2(FC)/6-31+G(3df,2p)	-76.318	2.02	104.5°	0.9 59
CCCBDB	MP2(FC)/cc-pVTZ	-76.319	2.04	103.5°	0.959
CCCBDB	CCSD(T)(FC)/cc-pVTZ	-76.332	2.04	103.6°	0.9 59
Cortez et al.	CCSD(T)(FC)/cc-pV6Z	-76.372		104.4°	0.958
Kim et al.	$CISD(full)/(13s2d)^d$	-76.382		104.8°	0.952
Kim et al.	MP2(full)/(13s2d)	-76.391		104.2°	0.95 9
Kim et al.	CCSD(full)/(13s2d)	-76.396		104.4°	0. 956
Kim et al.	CCSD(T)(full)/(13s2d)	-76.406		104.1°	0. 959
Kim et al.	MP4(full)/(13s2d)	-76.407		104.1°	0. 960
CCCBDB	B3LYP/6-31G*	-76.409	2.10	103.6°	0.9 69
CCCBDB	B3LYP/6-31G**	-76.420	2.04	103.7°	0.965
CCCBDB	B3LYP/cc-pVDZ	-76.421	1.94	102.7°	0.969
Lüchow et al.	MRCISD/aug-cc-pCV5Z	-76.427 ^e			
Gurtubay, Needs	FN-DQMC	-76.428 ^e			
CCCBDB	B3LYP/cc-pVTZ	-76.460	1.92	104.5	0. 961
Nonrelativistic fixed-	-76.438				
Experimental values	-76.480	1.85	104.5°	0.958	

^aSee footnote a to Table 15.2 in Section 15.6.

^bR. J. Harrison and N. C. Handy, *Chem. Phys. Lett.*, **95**, 386 (1983); cccbdb.nist.gov; G. E. Scuseria and H. F. Schaefer, III, *Chem. Phys. Lett.*, **146**, 23 (1988); H. F. Schaefer, III et al., in *Yarkows*, Chapter 1; M. H. Cortez et al., *J. Chem. Theor. Comput.*, **3**, 1267 (2007); J. Kim et al., *J. Chem. Phys.*, **102**, 310 (1995); A. Lüchow, J. B. Anderson, and D. Feller, *J. Chem. Phys.*, **102**, 7706 (1997); I. G. Gurtubay and R. J. Needs, *J. Chem. Phys.*, **127**, 124306 (2007).

°FC denotes frozen-core calculations and full indicates that the frozen-core approximation is not used.

^d(13s...2d) is an uncontracted (13s8p4d2f/8s4p2d) set with 131 basis functions,

eCalculated at a geometry close to the experimental geometry.

If electron-correlation is added to the wavefunction, <u>all</u> properties converge to experimentally observed values.

CCCBDB	B3LYP/6-31G*	-76.409	2.10	103.6°	0.9 69
CCCBDB	B3LYP/6-31G**	-76.420	2.04	103.7°	0. 965
CCCBDB	BDB B3LYP/cc-pVDZ		1.94	102.7°	0.969
Lüchow et al.	MRCISD/aug-cc-pCV5Z	-76.427 ^e			
Gurtubay, Needs	FN-DQMC	-76.428 ^e			
CCCBDB	B3LYP/cc-pVTZ	-76.460	1.92	104.5	0. 961
Nonrelativistic fixed-	-76.438				
Experimental values	-76.480	1.85	104.5°	0. 958	

^aSee footnote a to Table 15.2 in Section 15.6.

^bR. J. Harrison and N. C. Handy, *Chem. Phys. Lett.*, **95**, 386 (1983); cccbdb.nist.gov; G. E. Scuseria and H. F. Schaefer, III, *Chem. Phys. Lett.*, **146**, 23 (1988); H. F. Schaefer, III et al., in *Yarkony*, Chapter 1; M. H. Cortez et al., *J. Chem. Theor. Comput.*, **3**, 1267 (2007); J. Kim et al., *J. Chem. Phys.*, **102**, 310 (1995); A. Lüchow, J. B. Anderson, and D. Feller, *J. Chem. Phys.*, **106**, 7706 (1997); I. G. Gurtubay and R. J. Needs, *J. Chem. Phys.*, **127**, 124306 (2007). ⁶FC denotes frozen-core calculations and full indicates that the frozen-core approximation is not used. ^d(13s...2d) is an uncontracted (13s8p4d2f/8s4p2d) set with 131 basis functions.

eCalculated at a geometry close to the experimental geometry.

B3LYP is the most popular DFT method; B3LYP/cc-pVTZ 99.87% of experiment; Takes 5 sec on a PC (1 sec if SP)

564-19 Lec18 Fri 22feb19

CCCBDB	B3LYP/6-31G*	-76.409	2.10	103.6°	0.969
CCCBDB	B3LYP/6-31G**	-76.420	2.04	103.7°	0. 965
CCCBDB	B3LYP/cc-pVDZ	-76.421	1.94	102.7°	0.9 69
Lüchow et al.	MRCISD/aug-cc-pCV5Z	-76.427 ^e			
Gurtubay, Needs	FN-DQMC	-76.428 ^e			
CCCBDB	B3LYP/cc-pVTZ	-76.460	1.92	104.5	0. 961
Nonrelativistic fixed-	-76.438				
Experimental values	-76.480	1.85	104.5°	0. 958	

^aSee footnote a to Table 15.2 in Section 15.6.

^bR. J. Harrison and N. C. Handy, Chem. Phys. Lett., 95, 386 (1983); cccbdb.nist.gov; G. E. Scuseria and H. F. Schaefer,

III, Chem. Phys. Lett., 146, 23 (1988); H. F. Schaefer, III et al., in Yarkony, Chapter 1; M. H. Cortez et al., J. Chem. Theory Comput., 3, 1267 (2007); J. Kim et al., J. Chem. Phys., 102, 310 (1995); A. Lüchow, J. B. Anderson, and D. Feller, J. Chem. Phys., 106, 7706 (1997); I. G. Gurtubay and R. J. Needs, J. Chem. Phys., 127, 124306 (2007). °FC denotes frozen-core calculations and full indicates that the frozen-core approximation is not used. d(13s...2d) is an uncontracted (13s8p4d2f/8s4p2d) set with 131 basis functions.

^eCalculated at a geometry close to the experimental geometry.

	Water	B3LYP/cc-p	VTZ highe	est occupied	MOs		
			(A1)O	(A1)O	(B2)O	(A1)O	(B1)O
	Eigenv	values	-19.12112	-1.00831	-0.52771	-0.38542	-0.30952
1	1 O	1S	0.97322	-0.20503	0.00000	-0.07789	0.00000
2		2S	-0.00948	0.46648	0.00000	0.18513	0.00000
3		35	0.05111	0.14123	0.00000	0.06005	0.00000
4		4S	0.00530	0.26510	0.00000	0.27685	0.00000
5		5PX	0.00000	0.00000	0.00000	0.00000	0.37000
6		5PY	0.00000	0.00000	0.29791	0.00000	0.00000
7		5PZ	-0.00157	-0.06592	0.00000	0.32240	0.00000
8		6PX	0.00000	0.00000	0.00000	0.00000	0.42182
9		бру	0.00000	0.00000	0.32623	0.00000	0.00000
10		6PZ	-0.00027	-0.07862	0.00000	0.36176	0.00000
11		7PX	0.00000	0.00000	0.00000	0.00000	0.38755
12		7PY	0.00000	0.00000	0.15452	0.00000	0.00000
13		7PZ	-0.00087	-0.01589	0.00000	0.29150	0.00000
14		8D 0	0.00005	0.00142	0.00000	-0.00559	0.00000
15		8D+1	0.00000	0.00000	0.00000	0.00000	-0.00540
16		8D-1	0.00000	0.00000	-0.01142	0.00000	0.00000
17		8D+2	-0.00031	-0.00412	0.00000	0.00171	0.00000
18		8D-2	0.00000	0.00000	0.00000	0.00000	0.00000
19		9D 0	-0.00014	0.00335	0.00000	-0.01848	0.00000
20		9D+1	0.00000	0.00000	0.00000	0.00000	-0.01877
21		9D-1	0.00000	0.00000	-0.01521	0.00000	0.00000
22		9D+2	-0.00013	-0.00749	0.00000	0.00318	0.00000
23		9D-2	0.00000	0.00000	0.00000	0.00000	0.00000
24		10F 0	0.00009	0.00035	0.00000	0.00084	0.00000

				(A1)O	(A1)O	(B2)O	(A1)O	(B1)O
	Eig	env	values	 -19.12112	-1.00831	-0.52771	-0.38542	-0.30952
25			10F+1	0.00000	0.00000	0.00000	0.00000	0.00149
26			10F-1	0.00000	0.00000	-0.00040	0.00000	0.00000
27			10F+2	0.00009	0.00182	0.00000	-0.00239	0.00000
28			10F-2	0.00000	0.00000	0.00000	0.00000	0.00000
29			10F+3	0.00000	0.00000	0.00000	0.00000	-0.00370
30			10F-3	0.00000	0.00000	-0.00258	0.00000	0.00000
31	2	H	1S	0.00041	0.09582	0.14975	-0.08763	0.00000
32			2S	-0.00188	0.08076	0.21228	-0.12074	0.00000
33			35	-0.00037	0.01096	0.07888	-0.03201	0.00000
34			4PX	0.00000	0.00000	0.00000	0.00000	0.01032
35			4PY	0.00012	-0.01119	-0.00915	0.00914	0.00000
36			4PZ	-0.00017	0.00744	0.01270	0.00143	0.00000
37			5PX	0.00000	0.00000	0.00000	0.0000	0.03388
38			5PY	0.00078	-0.01197	-0.01400	0.01323	0.00000
39			5PZ	-0.00065	0.00571	0.02078	0.02105	0.00000
40			6D 0	-0.00011	-0.00010	0.00207	0.00230	0.00000
41			6D+1	0.00000	0.00000	0.00000	0.0000	0.00270
42			6D-1	0.00078	-0.00275	-0.00610	0.00046	0.00000
43			6D+2	0.00039	-0.00225	-0.00314	0.00319	0.00000
44			6D-2	0.00000	0.00000	0.00000	0.0000	-0.00414
45	3	H	1S	0.00041	0.09582	-0.14975	-0.08763	0.00000
46			2S	-0.00188	0.08076	-0.21228	-0.12074	0.00000
47			35	-0.00037	0.01096	-0.07888	-0.03201	0.00000
48			4PX	0.00000	0.00000	0.00000	0.00000	0.01032

b3lyp/cc-pV6Z

```
%nproc=16
%mem=1000mw
%chk=Jean-h20-b3lypcc-pV6Z-opt.chk
#p opt b3lyp/cc-pV6Z pop=full
```

water molecule from Jean Standard pdf

0 1 8 0.000000 0.000000 0.116321 1 0 .000000 0.751155 -0.465285 1 0.000000 -0.751155 -0.465285 Molecular Orbital Coefficients: b3lyp/cc-pV6Z

25

13PZ

1 2 3 4 5 (A1)--O (A1)--O (B2)--O (A1)--O (B1)--O Eigenvalues -- -19.13486 -1.02020 -0.54089 -0.39835 -0.32373

0.00015 -0.00114 0.00000 0.08782 0.00000

-				
1	O 1S	-0.42362 -0.08854 0.00000 -0.03273 0.00000 26	14D 0	-0.00001 0.00011 0.00000 -0.00054 0.00000
2	2S	0.45768 0.16731 0.00000 0.06303 0.00000 27	14D+1	0.00000 0.00000 0.00000 0.00000 -0.00053
3	35	-0.18948 -0.09083 0.00000 -0.03551 0.00000 28	14D-1	0.00000 0.00000 -0.00102 0.00000 0.00000
4	4 S	-0.01786 0.12380 0.00000 0.05610 0.00000	14D+2	0.00016 -0.00026 0.00000 0.00027 0.00000
5	55		14D-2	0.00000 0.00000 0.00000 0.00000 0.00000
5	55	0.00224 0.00000 0.00000 0.00000 31	15D 0	-0.00002 0.00018 0.00000 -0.00085 0.00000
0	05		15D+1	
7	75	-0.00490 0.10222 0.00000 0.25156 0.00000 33	15D-1	
8	8PX	0.00000 0.00000 0.00000 0.00000 0.10938 34	15D+2	
9	8PY	0.00000 0.00000 0.08977 0.00000 0.00000	15D-2	
10	8PZ	0.00112 - 0.01940 0.00000 0.09652 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	16D U	
11	9PX	$0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.17454$	16D+1	
12	QDV		160-1	
12	007		160 2	
15	972		170.0	
14	10PX	$0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.2/136^{41}$	1700	
15	10PY	$0.00000 \ 0.00000 \ 0.22858 \ 0.00000 \ 0.00000 \ 42$	170+1	
16	10PZ	$-0.00111 -0.05045 0.00000 0.24567 0.00000_{44}$	17D-1 17D+2	
17	11PX	0.00000 0.00000 0.00000 0.00000 0.29499 45	17D-2	
18	11PY	0.00000 0.00000 0.23350 0.00000 0.00000 46	18D 0	-0.00001 0.00045 0.00000 0.00447 0.00000
19	11P7	0.00695 -0.05610 0.00000 0.23171 0.00000 47	18D+1	0.00000 0.00000 0.00000 0.00000 -0.00220
20	12DV		18D-1	0.00000 0.00000 -0.00767 0.00000 0.00000
20	1257		18D+2	0.00151 -0.00380 0.00000 -0.00694 0.00000
21	1224		18D-2	0.00000 0.00000 0.00000 0.00000 0.00000
22	12PZ	$0.00346 - 0.02223 \ 0.00000 \ 0.11517 \ 0.00000 \ _{51}$	19F 0	-0.00003 0.00004 0.00000 0.00001 0.00000
23	13PX	0.00000 0.00000 0.00000 0.00000 0.14066		
24	13PY	0.00000 0.00000 0.02908 0.00000 0.00000		

109	26H+2	0.00000 0.00002 0.00000 -0.00008 0.00000
110	26H-2	0.00000 0.00000 0.00000 0.00000 0.00000
111	26H+3	0.00000 0.00000 0.00000 0.00000 -0.00007
112	26H-3	0.00000 0.00000 -0.00009 0.00000 0.00000
113	26H+4	-0.00001 -0.00003 0.00000 0.00003 0.00000
114	26H-4	0.00000 0.00000 0.00000 0.00000 0.00000
115	26H+5	0.00000 0.00000 0.00000 0.00000 0.00003
116	26H-5	0.00000 0.00000 0.00004 0.00000 0.00000
117	27H 0	0.00002 0.00015 0.00000 -0.00016 0.00000
118	27H+1	0.00000 0.00000 0.00000 0.00000 -0.00008
119	27H-1	0.00000 0.00000 -0.00045 0.00000 0.00000
120	27H+2	0.00003 0.00012 0.00000 -0.00014 0.00000
121	27H-2	0.00000 0.00000 0.00000 0.00000 0.00000
122	27H+3	0.00000 0.00000 0.00000 0.00000 -0.00025
123	27H-3	0.00000 0.00000 -0.00044 0.00000 0.00000
124	27H+4	0.00006 -0.00034 0.00000 -0.00008 0.00000
125	27H-4	0.00000 0.00000 0.00000 0.00000 0.00000
126	27H+5	0.00000 0.00000 0.00000 0.00000 0.00020
127	27H-5	0.00000 0.00000 0.00025 0.00000 0.00000
128	281 0	-0.00001 0.00001 0.00000 0.00003 0.00000
129	28l+1	0.00000 0.00000 0.00000 0.00000 0.00001
130	28I-1	0.00000 0.00000 0.00007 0.00000 0.00000
131	281+2	0.00000 0.00003 0.00000 0.00002 0.00000
132	281-2	0.00000 0.00000 0.00000 0.00000 0.00000
133	281+3	0.00000 0.00000 0.00000 0.00000 0.00002
134	281-3	0.00000 0.00000 0.00002 0.00000 0.00000
135	281+4	0.00001 0.00008 0.00000 -0.00003 0.00000
136	281-4	0.00000 0.00000 0.00000 0.00000 0.00000
137	281+5	0.00000 0.00000 0.00000 0.00000 -0.00010
138	281-5	0.00000 0.00000 -0.00011 0.00000 0.00000
139	281+6	0.00000 -0.00002 0.00000 -0.00002 0.00000
140	281-6	0.00000 0.00000 0.00000 0.00000 0.00000

Last 32 CGTF coefficients for the O atom

321 (B2)--V 40.787038 43.939263

322 (A1)--V 105.789410 195.525732

Total kinetic energy from orbitals= 7.617168527125D+01

No NMR shielding tensors so no spin-rotation constants.

Leave Link 601 at Sat Mar 4 11:53:51 2017, MaxMem= 1048576000 cpu: 18.8 (Enter /g09/g09/l9999.exe)

1\1\GINC-MFRUITS\FOpt\RB3LYP\CC-pV6Z\H2O1\CALLIS\04-Mar-2017\0\\#p opt b3lyp/cc-pV6Z pop=full\\water molecule from Jean Standard pdf\\0,1\0, 0.,0.1175449502\H,0.,0.7626351801,-0.4658969751\H,0.,-0.7626351801,

-0.4658969751\\Version=AS64L-G09RevD.01\State=1-A1\ **HF=-76.4740629** \RMSD =1.093e-09\RMSF=7.226e-05\Dipole=0.,0.,-0.7348709\Quadrupole=-1.131291 7,1.3222066,-0.1909149,0.,0.,0.\PG=C02V [C2(O1),SGV(H2)]\\@

THE POLHOLDE ROLLS WITHOUT SLIPPING ON THE HERPOLHOLDE LYING IN THE INVARIABLE PLANE.

H.GOLDSTEIN, "CLASSICAL MECHANICS", PG 161

Job cpu time: 0 days 3 hours 36 minutes 53.4 seconds. Clock time = 3.6 hrs/16 cpus = 13.5 minutes with 16 cpus. 3.6 hours (at least) on personal computer

File lengths (MBytes): RWF= 67 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Sat Mar 4 11:53:51 2017.

out file was 87403 lines.

How can CI (mixing higher energy state with ground state cause correlation???

Higher states have more nodes. Squaring the linear combination gives cross terms (interference terms), which are negative when 2 electrons are on different sides of a nodal surface.

 $\Psi^*\Psi$ is thereby *reduced*.

Example: The H_2 molecule (ionic and covalent terms, difference between the MO and Valence Bond (VB) methods

<u>x x</u> σ_{u}^{*}

Both electrons in ANTI-BONDING MO

Both electrons in

BONDING MO

σ_u*(1) σ_u*(2)

 $\sigma_{g}(1) \sigma_{g}(2)$

 σ_{μ}

 $\sigma_{\tt g}$

H₂ Molecule Configuration State Functions (CSFs)

A(1) = 1s(1) on Nucleus A B(1) = 1s(1) on Nucleus B

 $\sigma_{u}^{2} = [A(1) - B(1)] [A(2) - B(2)] = AA + BB - AB - BA$ (not normalized) $\sigma_{g}^{2} = [A(1) + B(1)] [A(2) + B(2)] = AA + BB + AB + BA$ (not normalized)

ionic + covalent = molecular orbital method

covalent* = AB + BA = valence bond method

*Heitler-London (1927) the <u>first</u> wavefunction proposed for H_2 at the dawn of quantum mechanics.

Do a linear variation calculation:

Ground = $c_{Lg} |\sigma_g^2 > + c_{Lu} |\sigma_u^2 >$

Will $|\sigma_u^2\rangle$ be added or subtracted from $|\sigma_g^2\rangle$?

Depends on the sign of $\langle \sigma_g^2 | H | \sigma_u^2 \rangle$

$$\begin{split} |1\rangle = |\sigma_{g}^{2} &>= \sigma_{g}(1)\sigma_{g}(2) \equiv |gg\rangle \\ |2\rangle = \sigma_{u}(1)\sigma_{u}(2) \equiv |uu\rangle \\ g &= 0.707 |A + B\rangle \\ u &= 0.707(A - B) \text{ where } A = 1s_{A}, B = 1s_{B} \\ <1|H|2\rangle = < gg |h_{1} + h_{2} + 1/r_{12} |uu\rangle \\ &= 2 < g |h|u\rangle < |g|u\rangle = 0 \\ <1|H|2\rangle = < gg |1/r_{12} |uu\rangle = (gg |uu) \text{ in Parr notation} \\ &= 1/4(A + B)(A + B) |(A - B)(A - B) \\ &= 1/4[(AA + BB + AB + BA |AA + BB - AB - BA) \\ &= 1/4[(AA |AA) + (AA |BB) - (AA |AB) - (AA |BA) + (BB |AA) + (BB |BB) - (BB |AB) - (BB |BA) + (AB |AA) + (AB |BB) - (BA |AB) - (BA |BA)] \end{split}$$

<1|H|2>=<1 |1/r₁₂| 2> =

 $\frac{1}{2}[(AA | AA) + (AA | BB) - (AA | AB) - (AA | BA) + (BB | AA) + (BB | BB) - (BB | AB) - (BB | BA) + (AB | AA) + (AB | BB) - (AB | AB) - (AB | BA) + (BA | AA) + (BA | BB) - (BA | AB) - (BA | BA)]$

(where the $1/r_{12}$ is left out in the Parr notations

Note that almost all of the terms with AB are NEGATIVE

But r_{12} is large when the two electrons are on different atoms,

which means anything involving AB will be negligible relative to (AA|AA), (BB|BB), and (AA|BB). Therefore, <1|H|2> is clearly *positive*.

 Ψ = |gg> - c|uu>, where c is positive

$$\Psi = |gg > -c|uu >$$

$$\Psi^{2} \text{ is proportional to } [|gg > -c|uu >]^{2}$$

$$= |gg >^{2} + c^{2} |uu >^{2} - 2c|gg > |uu >$$
[uu> can be positive or negative, depend on where electrons 1 and 2 are located.
If e1 and e2 are in same lobe -2c |uu> is neg. and Ψ^{2} is reduced
If e1 and e2 are in different lobes, -2c |uu> is positive, and Ψ^{2} is increased

$$-|uu> = \begin{array}{c} + & - & + \\ 1 & - & 2 \end{array} = - \text{ Lower probability}$$

$$-|uu> = \begin{array}{c} + & - & + \\ 1 & - & 2 \end{array} = - \text{ Lower probability}$$

$$-|uu> = \begin{array}{c} + & - & + \\ 1 & - & 2 \end{array} = + \text{ Higher probability}$$

$$-|uu> = \begin{array}{c} + & - & + \\ 1 & 2 \end{array} = - = + \text{ Higher probability}$$

<u>Cl-singles (CIS)</u> (important for understanding spectra $(N!)^{-1/2} |A\overline{A}B\overline{B}C\overline{C}|$

If ground state is

Example of Full CI (FCI)

High energy CSF for six electrons and 7 basis functions

If the basis set is <u>complete</u>, and if we include <u>all</u> <u>possible configurations</u>, the eigenvalues and eigenstates will be <u>exact</u>.

Just look at spectra on LOG SCALE

40000 cm⁻¹ = 250 nm

(Reduced) 1st order Transition Density is Product of Ground and Excited state wavefunctions

(integrated over all but one electron)

Example of GO9 CIS calculation for benzene CIS =Configuration Interaction Singly-Excited (configurations) %chk=C:\564-17\benzene1.chk # cis=nstates=5/ 3-21g pop=reg density=current (method)/(basis set) (needed to get excited state density) Title Card Required

0 1

С	1.20809735	0.69749533	-0.0000000
С	0.0000000	1.39499067	-0.0000000
С	-1.20809735	0.69749533	-0.0000000
C	-1.20809735	-0.69749533	-0.0000000
C	0.0000000	-1.39499067	-0.0000000
C	1.20809735	-0.69749533	-0.0000000
Н	2.16038781	1.24730049	-0.0000000
Н	0.0000000	2.49460097	-0.0000000
Н	-2.16038781	1.24730049	-0.0000000
Н	-2.16038781	-1.24730049	-0.0000000
н	0.0000000	-2.49460097	-0.0000000
н	2.16038781	-1.24730049	-0.0000000

Ground to excited state transition electric dipole moments (Au): Osc. Dip. S. state Х Υ \mathbf{Z} 1 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0172-2.2976 0.0000 5.2793 1.1398 4 -2.2976 -0.01720.0000 5.2793 1.1398 5 0.0000 0.0000 0.0000 0.0000 0.0000 Ground to excited state transition velocity dipole moments (Au): state Х Υ Ζ Dip. S. Osc. 1 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 3 -0.00150.1978 0.0000 0.0391 0.0806 4 0.1978 0.0015 0.0000 0.0391 0.0806 5 0.0000 0.0000 0.0000 0.0000 0.0000 Ground to excited state transition magnetic dipole moments (Au): state Х Υ \mathbf{Z} 1 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000

```
Excited state symmetry could not be determined.
Excited State 2: Singlet-?Sym 6.7916 eV 182.55 nm
f=0.0000 <s**2>=0.000
     20 -> 22 -0.49024
     21 -> 23 0.49024
Excited state symmetry could not be determined.
Excited State 3: Singlet-?Sym 8.8123 eV 140.70 nm
f=1.1398 <s**2>=0.000
     20 -> 22 0.48350
     21 -> 23 0.48350
Excited state symmetry could not be determined.
Excited State 4: Singlet-?Sym 8.8123 eV 140.70 nm
f=1.1398 <s**2>=0.000
     20 -> 23 0.48350
     21 -> 22 -0.48350
Excited state symmetry could not be determined.
Excited State 5: Singlet-?Sym 9.5510 eV 129.81 nm
f=0.0000 <S**2>=0.000
     14 -> 30 0.16335
     18 -> 22 0.47542
     19 -> 23 0.47542
```

Ground to excited state transition densities written to RWF 633

Excitation energies and oscillator strengths:

Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 6.5521 eV 189.23 nm f=0.0000 exp 40,000 cm⁻¹ = 265 <S**2>=0.000 nm 20 -> 23 0.49957 21 -> 22 0.49957 Singlet-?Sym 6.7916 eV 182.55 nm f=0.0000 Excited State 2: $exp = 50,000 \text{ cm}^{-1} = 200 \text{ nm}$ <S**2>=0.000 20 -> 22-0.49024 $21 \rightarrow 23$ 0.49024 Singlet-?Sym 8.8123 eV 140.70 nm f=1.1398 Excited State 3: exp 54,000 cm⁻¹ = 185 nm <S**2>=0.000 20 -> 22 0.48350 21 -> 23 0.48350 Singlet-?sym 8.8123 eV 140.70 nm f=1.1398 Excited State 4: <S**2>=0.000 exp 54,000 cm⁻¹ = 185 nm 20 -> 23 0.48350 21 -> 22 -0.48350

Excited state symmetry could not be determined.

