Background

Some background from the Gaussian web site:
http://www.gaussian.com/
GaussView5 links:
https://www.d.umn.edu/~psiders/courses/chem5650/gaussvi ewtutorial/tutorial.html
https://www.mtholyoke.edu/courses/jwijngaa/PS/Gaussview2 .pdf

Principles

1. Variation Principle

$$
\int \Psi_{\text {approx }} * H \Psi_{\text {approx }} d V=E_{\text {approx }} \geq E_{\text {exact ground state }}
$$

The Hamiltonian is always "exact"
The wavefunction is always approximate, and is varied to reach the lowest possible ground state energy with the type of function chosen

More exact if:
1)Larger, more detailed basis set of atomic orbitals
2)More electron-electron correlation (dodging)

Specific Objectives:

1. Create an input file for water. Compute its equilibrium energy and structure, and examine its molecular orbitals.
2. Compute the geometry and energy of a pair of H-bonded waters.
3. Compute and compare vibrational frequencies for $\mathbf{N}_{2} \mathbf{O}$, and CO_{2} at different levels of accuracy and make assignments to observed spectra.
4. Create and examine benzene MOs and vibrations, including benzene-d1.

GaussView lets you examine the results of Gaussian calculations using a variety of graphical techniques.

Gaussian results that can be viewed graphically include the following:

* Optimized molecular structures.
* Molecular orbitals.
* Electron density surfaces from any computed density.
* Electrostatic potential surfaces.
* Surfaces for magnetic properties.
* Surfaces may also be viewed as contours.
* Atomic charges and dipole moments.
* Animation of the normal modes corresponding to vibrational frequencies.
* IR, Raman, NMR, VCD and other spectra.
* Molecular stereochemistry information.
* Animation of geometry optimizations, IRC reaction path following, potential energy surface scans, and
ADMP and BOMD trajectories. Two variable scans can also be displayed as 3D plots. * Plots of the total energy and other data from the same job types as in the previous item.

Outline

1. wiki.crc.nd.edu/wiki/images/d/d7/Gaussview-5-ref.pdf
2. Login with netid, password
3. find a work directory c:\users\your netid and go to it
4. find the GaussView icon under All programs GaussView 5.0 icon open
click help --- just to see what is there, including tutorials
5. File ->Preferences : choose: launch directory
notice Display format
find the Gaussian 09W icon and open it
File-> Preferences: choose: launch directory
6. Look at Gaussview-5-ref.pdf
what can be done
typographic conventions
Menu items = blue
Buttons =green
Dialog names = Black. Gaussian
keywords and options like Opt=QST2 = Purple

7. Main Interface Control Panel

Current fragment
Various Tool Bars (detachable, moveable
View windows
Dialogs
Preferences

Main Interface: Control Panel

Hovering the MOUSE over an icon will tell its

function

in the lower left corner of

screen

Outline -2

Tool bars and Icons
hovering over icon \& look lower left
8. View Builder

5 items for creating "molecules"
UNDO = contrl-z
REDO = contrl- y

Positioning
bond length
angle
dihedral
options to know about
inquire
add valence
delete atom
selecting
clean
symmetrize

All of the Tool Bars:

5 tools for constructing a molecule get forms any element by clicking on any atom pick one of an assortment of rings
pick one of an assortment common small groups protein and nucleic acid components
measuring and changing: bond lengths, angles, and dihedrals Add a valence (H atom):
delete an atom:
"Clean": will roughly optimize the structure you have made

UNDO = control-Z

REDO = control-y

Specific Objectives:

1. Create an input file for water. Compute its equilibrium energy and structure, and examine its molecular orbitals.
2. Compute the geometry and energy of a pair of H-bonded waters.
3. Compute and compare vibrational frequencies for $\mathbf{N}_{2} \mathbf{O}$, and CO_{2} at different levels of accuracy and make assignments to observed spectra.
4. Create and examine benzene MOs and vibrations, including benzene-d1.

The essential ingredients of this file come in the following order: the route section (or "route card") begins with \#, and contains the method/basis (e.g., hf/6-31g) and other key words (separated by any number of spaces, in any order, case insensitive (non-ambiguous abbreviations are allowed). The route section may contain any number of lines, terminated by a blank line.

Example input \%chk=mydirect \# hf/3-21g opt	le for $\mathrm{H}_{2} \mathrm{O}$: h2o-1.gjf y/h2o-1.chk p=full
Title info	blank lines mark the different sections of input
01	
o 0. 0.0 .	
h 1. 0.0.	
h 0. 1. 0.	

Next is the net charge and multiplicity. (multiplicity = degeneracy of the total electron spin state $=2 S+1$. Total ANY angular momentum squared $=S(S+1)(h / 2 \pi)_{2}$. For a singlet state (closed shell ground state is always singlet) $\mathrm{S}=0,2 \mathrm{~S}+1=1$. For a doublet, $S=1 / 2$, i.e., (1 unpaired electron), $2 S+1=2$; and for triplet $2 S+1=3$ (2 unpaired electrons with z component electron spin quantum numbers, $\mathrm{m}_{\mathrm{s}}=-1,0,1$).
Next is a list of atom symbols or atomic numbers and coordinates given as either a set of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ values or by a Z-matrix. Important: numerical coordinates must have decimal points, with spaces between. Exact positioning does not matter.
The list of atoms and coordinates must end with a blank line

"Optimizing" geometry, keyword = opt

This means the program will do a series of variation calculations, compute the force on each atom and move the atoms accordingly a little bit, and repeat the process until forces are essentially zero on each atom.

Will this process find the lowest energy geometry for a molecule???

Outline -3

8. Display MOs
9. Vibrations

Examples
create GFP
benzene normal modes

PBC

