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For closed shell of n electrons

Which works because  Kii =Jii so 
there is only 1 Jii for each i
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A more compact form is:
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Applying the Variation Principle
A minimum E is sought by varying the occupied MO’s, until E is a 
minimum.  By use of the calculus of variations, and the method of 
Lagrange undetermined multipliers, the condition of minimum E 
requires that: )1(
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F h J K= + −∑Where F is the Fock Operator, given by:

Note:  F is a one-electron operator! 

How does it get to be 1-electron when H has 1/r12???

Because, Jj (1) is repulsion an electron with (𝝋𝝋𝐣𝐣)2, 
the electron charge cloud of the jth MO.  Not 
interaction with another electron directly — just 
the average position.

It is like interacting with a nucleus, except it is a smeared out electron charge



obtained by diagonalizing the matrix: 

One case of this is most often seen:

These eigenfunctions of the Fock Operator are called the Canonical 
Molecular Orbitals, 
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the condition of minimum E requires only that: )1(
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Because Any unitary transformation of the set of canonical MOs
will yield the same electron density, and therefore the same 
energy and other properties. 



The Fock Operator:
The Fock Operator F is an effective Hamiltonian, like the one in  
Huckel theory, but much more versatile and accurate.  
Therefore, the Fock Operator is physically quite transparent and 
easy to grasp.

h says that each electron (always called electron 1) has KE and attraction for all 
the nuclei (the one-electron part, sometime called Hcore).

Jj (1) is repulsion of electron 1 with (𝝋𝝋𝐣𝐣)2, the electron charge cloud of the jth

MO.  Not interaction with another electron directly — just the average position 

same is true for the Kj
-Kj reduces this repulsion between the electron in the the jth MO having the 
same ms as electron 1.  
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To see what the J operator (     ) is, we first write the 
expression for the  Jij integral:
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We may reorder so that all the integration over electron 2 
is in the center, revealing the J operator.

Because Jij is just a classical repulsion of two clouds,  Jop can be 
thought of as very similar to  e2/r12 except that the charge is not 
a point, it is a cloud shaped like the square of the jth molecular 
orbital.  It is just a function of electron 1 because we integrated 
over electron 2.



The exchange operator requires special description:
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or in Dirac notation:
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In all text books I have seen, this operator is just stated to have
have the following effect:
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In words:
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This is just the overlap integral, which would be zero, 
except it is weighted by 1/r12 in the integral.



No matter what value of i, Kj gives 0, unless m=i; then we get:
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|𝜑𝜑𝑖𝑖 >< 𝜑𝜑𝑗𝑗| operating on 𝜑𝜑𝑗𝑗: 

|𝜑𝜑𝑖𝑖 >< 𝜑𝜑𝑗𝑗|𝜑𝜑𝑖𝑖 > = 0

|𝜑𝜑𝑖𝑖 >< 𝜑𝜑𝑗𝑗|𝜑𝜑𝑗𝑗 > = |𝜑𝜑𝑖𝑖 >

i.e., turned |𝜑𝜑𝒋𝒋 > into |𝜑𝜑𝒊𝒊 >

Transition density operator

|𝜑𝜑𝑖𝑖 >< 𝜑𝜑𝑗𝑗| operating on 𝜑𝜑𝑗𝑗

a Raising Operator is just a sum of transition operators
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What does |i><j| + |j><k| + |k><i|  do ?
i,j,k are Cartesian unit vectors in x,y,z space



Orbital Energy
If F𝜑𝜑i = εi𝜑𝜑i for each MO that is occupied, the energy of the 
Slater determinant is minimized, and 
εi is called the “ ith MO energy” = < 𝜑𝜑i|F| 𝜑𝜑i>.
Where,   < 𝝋𝝋𝐢𝐢|F| 𝝋𝝋𝐢𝐢>  =   hii + ∑𝒋𝒋 (𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 − 𝑲𝑲𝑲𝑲𝒋𝒋)

εi= hii + Jii + sum of 2Jij –Kij for all j MOs for j not equal to i



Physical Interpretation of “MO Energy”
Pretend you are an electron:  what you have and see is your energy.
(you are in MO i) 

εi is your:
Kinetic energy

+ your attraction coulombic attraction to all the nuclei,  

+ the repulsion energy of your cloud of negative charge with 
each of the other clouds j

- the repulsion energy of the “charges” given by the product of your
orbital (i) times those orbitals j with the same ms that you have.

εi= hii + Jii + sum of 2Jij –Kij for all j MOs for j not equal to i



The Sum of MO Energies is NOT the Total HF Energy
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The sum of MO energies is

εi= hii + Jii + sum of 2Jij –Kij for all j MOs for j not equal to i
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Is the Sum of MO Energies the Total HF Energy?



The sum of MO energies counts the electron repulsion TWICE.
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Which is the sum of MO energies minus the total electron repulsion



Eneutral = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA

A

C

B
JBB

JAA

JBA

Ecation =   hAA + 2hBB + JBB + 2JBA - KBA

Edifference =   hAA + JAA + 2JBA - KBA = εA
=   The ionization energy

Koopman's Theorem: 

The ith “MO Energy” = minus the 
ionization potential for removing 
an electron from the ith MO

If no relaxation due to changed  electron density

Remove one of the electrons in MO A



Eneutral = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA

Eanion = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA + hCC + 2JCA – KCA + 2JCB– KCB

Edifference = hCC + 2JCA – KCA + 2JCB– KCB = εC
=   minus the Electron Affinity

Virtual (i.e., unoccupied 
orbitals are different!

Add an electron to MO C

The ith “MO Energy” is for an 
electron that "sees" ALL of the
occupied MO electrons 

If no relaxation due to changed  electron density

A

C

B
JBB

JAA

JBA
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