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2 — electron operators give

Japntlgg et 40, +4 ), + A - 2Kg, 2K, - 2K,
Electron repulsion is reduced between electron with same m_ as seen
for He(1s,2s)
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For closed shell of n electrons

n/2 n/2 n/2-1 nl/2

F_Zzhu_'_zju_l_ Z 2(4‘-] _2K|J)+VNN

i> |

A more compact form is:

n/2 n/2 n/2
Enr = Zzhu T 24 24(2‘] B K'J)_|_V|\”\|
=1 |=1

Which works because K;; =/ so
thereis only 1 J, for each i



Applying the Variation Principle

A minimum E is sought by varying the occupied MO’s, until E is a
minimum. By use of the calculus of variations, and the method of
Lagrange undetermined an}IZtipIiers, the condition of minimum E
requires that: Fo = ZZEij(PJ‘ O

i1 ~ - A
Where F is the Fock Operator, givenby: FQ)=h+) (2], -K;)
j

One case of this is most often seen: FAgpi 1) =& @)

obtained by diagonalizing the matrix: < ¢: | F |p; >
These eigenfunctions of the Fock Operator are called the Canonical
Molecular Orbitals,
but the previous equation shows that they are in no way unique!
Any unitary transformation of the set of canonical MOs
will yield the same electron density, and therefore the
same energy and other properties.




The Fock Operator:
The Fock Operator F is an effective Hamiltonian, like the one in
Huckel theory, but much more versatile and accurate.
Therefore, the Fock Operator is physically quite transparent and
easy to grasp.. A o

F(l):h+zj: (ZJJ- — KJ—)

h says that each electron (always called electron 1) has KE and attraction for all
the nuclei (the one-electron part, sometime called He°re),

.Ij is repulsion of electron 1 with (¢,)?, the electron charge cloud of the jth MO.

-Kj reduces this repulsion between the electron in the the j*" MO having the
same m_as electron 1.

But when electron 1 is in MO j, 2J(1)-K(1) operating on ¢(1) gives
just J,(1), because K;; = J;; (No self repulsion)



To see what the J operator ( j) is, we first write the
expression for the Jij integral:

N |
Jj :”§0i (1)(01' (Z)r—(pi (1)(01' (2)dz7dz,
12
We may reorder so that all the integration over electron 2

is in the center, revealing the J operator.
« T |
Jj :I¢i (1) |:j¢j (Z)r—§0j (Z)dfz} ¢ (Ddz

12

where Dgo;(Z)rlgoj (2)dz'2}:\]j(1)
12
Ji=]or @ Jj®e @)dz
Because J; is just a classical repulsion of two clouds, Jop can be
thought of as very similar to e?/r,, except that the charge is not
a point, it is a cloud shaped like the square of the jt* molecular
orbital. It is just a function of electron 1 because we integrated

over electron 2.



The exchange operator requires special description:

=A@ (4,4 @dr, ¢,0dn

or In Dirac notation:

Ky =<4 O <4114 @> 190>

but we want: K; = <4 )| K; |4 @) >
K; evidently must turn ¢ (1) into ¢; (1) and multiply by

<9;(2) |ri | ¢ (2) >,but it does not know what ¢

12
It will be operating on;



In all text books | have seen, this operator is just stated to have
have the following effect:

K 100> = <10 @> 0,0

12

In words:

turn|¢; (1) >into | ¢, (1) >

. 1
and multiply by the number < ¢, (2) | — ¢, (2) >
r12
This is just the overlap integral, which would be zero,
except it is weighted by 1/r,, in the integral.



An explicit operator that will accomplish thisis:

, 1
Kj =< ?D; (2)|r— {Z| P () >| ey >< P, 1) |}

12
then

1
Ki=<o D] | <= D loma>loo><gaolr| o @)>
L, |45

12

= <o O] K., |, @) >

No matter what value of i, when m=i we get:

K10 0> = <0, 0 @)>0,0)>

12
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