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The same will be true for any one-electron operator,
so for the electron-nuclear attraction
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The 2-electron operator 1/r,, is different:

<1 5= [15(Ws(2) —1s(WIS()dr,d 7, = Iy

5 5
J; repulsion integrals are called “Coulomb integrals”;

Here they are simply the repulsion of two 1s clouds of
negative charge, that happen to be superimposed in this case.



Thus, for the He ground state:
E = Zhls+ jls,ls

ground

where h, .= is a sum of one-electron operators:

the KE + electron-nuclear attraction for a 1s electron



Next consider the Helium 1s2s configuration

Faingier =[15(1)28(2) +25()1s(2)] [a(1) £(2) - F (D) (2)]
W inter = [15(1) 25(2) + 25(1) 15(2)] { a(1)B(2) - B(1) ex(2) }

<E>gngier = [<1s(1) 25(2) + 2s(1) 1s(2)] { a(1)B(2) - B(1) af(2) } [H | [1s(1) 25(2) + 2s(1) 1s5(2)] { (1

<E>ginger = [<15(1) 25(2) + 25(1) 1s(2)] { a(1)B(2) - P(1) au(2) } |H | [1s(1) 25(2) + 25(1) 15(2)] { o(1)B(2) - B(1) &1(2) } >

inglet —

Again, H does not have spin coordinates, ignoring spin-orbit coupling,
SO:

Eingiet = (5(1)25(2) + 2s(1)1s(2)|H| s(1)2s(2) + 25(1)1s(2))

singlet —
Now the 1-electron part has to be h, + h,  but appears to
be twice that at this point. Must normalize the linear
combination,



Normalization
Whenever two orthonormal functions are added,
e.g., |A>+ |B>, the overlap is no longer 1,
but (<A] +<B|) | (|A>+ |B>)
= N?(<A|A> + <B|B>+ <A|B> + <B| A>
= 1 + 1 + 0O + 0=2

So normalization constant squared =1/2

norm const = 2°1/2= 0,707

Generally, adding N orthonormal functions with
equal weight gives norm const= N1/



but the 2-electron part has an extra part due to electron exchange

<1/r, >= L (1s(1)2s(2) + 23(1)15(2)\i| 15(1)2s(2) + 2s(1)1s(2))

2 I,

- (1s(025(2)|—1150)25(2)) + (1s@)2s(2)|-—| 35AEE))

12 12

- <1s(1)1s(1)\i| 25(2)25(2)) + <1s(1)25(1)\i| 15(2)2s(2))

I, I,
Order does not matter (just multiplying by 1/r,,). Writing this way makes it easier to visualize
= J 1s,2s + I(15,25

where Kls,Zs is called an exchange integral because it arises only
because of the requirement that the electrons must exchange.

J; is classical; It is simply the Coulombic repulsion of 1s(1)* and 2s(2)?
negative clouds of charge.
K;; is the repulsion of two ij clouds: 1s(1)2s(1) and 1s(2)2s(2) -



Triplet State
<1/r, >= %(13(1)25(2) - 25(1)13(2)\%| 15(1)2s(2) — 2s(1)1s(2))

12

- <1s(1)zs(2)\ri| 15(1)2s(2)) - <1s(1)23(2)\ri| 25(1)1s(2))

= <1s(1)1s(1)\ri| 25(2)2s(2)) - <1s(1)25(1)\ri| 15(2)2s(2))

Now the cross terms are negative, because the space function is antisymmetric.

= J15,25 minus Kls,Zs
The triplet state is LOWER than the singlet state!!!

because it can be proved that all J; and K;; integrals are positive,
but K <J;.

J;is classical; Itis simply the Coulombic repulsion of two
negative clouds of charge described by the squares of the orbitals
K;; is the repulsion of two ij clouds e.g., 1s(1)2s(1)



Slater Determinants notation for the same functions:

\Pground — (013 (1)515 (2) o (515 (1)(015 (2)

Y

_ (015 (1) als (1)
T 0 (2) @(2)

¥ = A1)B(2) - B)A(2)

Y

ground —

AQ) B()
A(2) B(2)

For 4 electrons:
|ABCD| means a a slater determinant and the
electron numbering in each termis 1,2,3,4

AQ)  A(2)
B(1) B(2)

=|AB|



Antisymmetry for more than 2 electrons

Generic 3 electron case:

¥ =AQL)B(2)C(3)...— BQA?)C(3)...—-C()B(2)AQ)...
AQ)  AR2) AQ)| |AD B@R) C@)
¥ =(B()) B(2) B(3)|=|A(2) B(2) C(2)|=|ABC]|
CA C@) CE) |AQ) BEB) CE)
V"V = (|ABC|||ABC|)

Note that it does not matter whether:
columns have same electron number and rows have same orbital,
or vice versa



Normalization (assuming orthonormal orbitals)

There are N! (N factorial) terms for an N-electron Slater determinant
Example of 3 electrons: 3!=6

ABC-ACB + BCA-BAC+ CAB-CBA

Overlap integral is:
<ABC - ACB + BCA—-BAC + CAB—-CBA| ABC—ACB + BCA—-BAC + CAB—-CBA> ="

= <ABC | ABC>=<A|A><B|B><C|C>=(1)(1)(1) because orbitals are 1-electron functions

but, if there is only one mismatch, e.g., <ABC | ACB>

= <A|A><B|C><C|B>=(1) (0) (0) =0



ab initio Calculations

meaning literally: from the beginning

In practice means: no approximations are made in the mathematical
operations, although all calculations are more or less approximate,
depending on the number of variational parameters chosen.

H:;—lv_f _y i, 2_ +Z——v2

2 1,1 r,u i>j !
electron
2T electron- electron- nuclear nuclear-
kinetic E ——
nuclear electron kinetic E nuclear

attraction repulsion repulsion



H:Z—lvf

2 i Yy
electron
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kinetic E
nuclear
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electron-
electron

ONE-electron
operators

TWO-electron
operators

“Electronic” Energy

nuclear nuclear-
kinetic E nuclear
‘ repulsion

= 0 for electronic
energy at a fixed
geometry

= a constant

for electronic
energy at a fixed
geometry

Is added to the
electronic energy

at the end
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Hartree Self-Consistent Field (SCF)

Wavefunction = single product of orthonormal spin orbitals

A ,K\ B gC C where bar on top means 3 spin

This preceded the Hartree-Fock SCF.

What is wrong with this?

Not anti-symmetric to interchange of electron coordinates,

Fock was the one who extend the method for Slater
Determinants.



Hartree-Fock Self Consistent Field (SCF

Wavefunction = single Slater determinant of orthonormal
spin orbitals (N!)‘llz‘AABgcc_“‘
HF-SCF total energy: ***

Simplifications:
1. ***Unnecessary to have a determinant on both sides because of double
counting of permutations

2. Integrate over electrons ONLY because :
nuclear kinetic energy assumed zero (Born-Oppenheimer)

3. and therefore nuclear-nuclear repulsion is a constant to be added after the
purely electronic energy is determined.

4. H does not contain spin (a good approximation for light atoms)



Consider the example where there are 6! =720 permutations on the right,
showing only the permutation of electrons 1 and 2

E,..=(N)"*<AABBCC|H||AABBCC >

=<AABBCC|H|AABBCC -AABBCC —...>
N— _

——
<A(1)|h(1)|A(1)><A(2)|A(2)><a | B><PB | a><A(3)|A(3)><A(4)|A(4)>....
just for the one-electron part of H for electron 1.

This illustrates most of the permutations give zero because of either spin or
space orthogonality mismatches (when an electron is in a different
spin-orbital on the two sides of the integral).

Such mismatches are may only be non zero if the corresponding operator in
the Hamiltonian intervenes.

Slater Condon Rules

Slater and Condon articulated rules for the
few cases on non zero element.




118 The Condon-Slater Rules pp 320-321 Levine 7t E.

In the Hartree—Fock approximation, the wave function of an atom (or molecule) is a Slater
determinant or a linear combination of a few Slater determinants [for example, Eq. (10.44)]
A configuration-interaction wave function such as (11.17) is a linear combination of many
Slater determinants. To evaluate the energy and other properties of atoms and molecules
using Hartree—Fock or configuration-interaction wave functions, we must be able to evalu-
ate integrals of the form (D' | B | D), where D and D' are Slater determinants of ortho-
normal spin-orbitals and B is an operator.

Each spin-orbital u; is a product of a spatial orbital 6; and a spin function o;, where
o, is either @ or B. We have u; = 6,0 and (u;(1) | w;(1)) = &, where {u;(1) | u;(1)
involves a sum over the spin coordinate of electron 1 and an integration over its spatial
coordinates. If u; and u; have different spin functions, then (10.12) ensures the orthogonality

of u; and ;. If u; and u; have the same spin function, their orthogonality is due to the
“rthogonality of the spatial orbitals ¢, and 6,.
For an n-electron system, D 1s

D

1
] Hlf-:z) HE(Z) ; u”(_z) (11.76)

VA

Anexample withn = 3is Eq. (10.40). D' has the same form as D except that ., u,, . . . , u,
are replaced by ug, ub, ..., u,,. i

x*Y T L] 1 A 1 i Y= 1T %= P



11.8 The

o w; and u;. If u; and u; have the same spin function, their orthogonality is due to the
“rthogonality of the spatial orbitals #; and 6,.
For an n-electron system, D 1s

u (1) wp(l) (1)
I 2 2 2
be L |m@ @) in(2) S
Val| . :
w(n) w(n) ... u(n)
Anexample withn = 3is Eq. (10.40). D' has the same form as D except that iy, u,. . . . , u,
are replaced by uj, us, ..., u,.

We shall assume that the columns of D and D' are arranged so as to have as many
as possible of their left-hand columns match. For example, if we were working with the
~ Slater determinants |15152s3p,| and |15153py4s), we would interchange the third and fourth
columns of the first determinant (thereby multiplying it by —1) and let D = |15-l_53p325|
and D' = |Isls3pgds|.
The operator B typically has the form

B = Zf; - 2 > 2 (1137

=151>=1

where the one-electron operator f i involves only coordinate and momentum operators of
electron i and the two-electron operator gu m\.r{}lveq electrons i and j. For example, if B
is the atomic Hamiltonian operator (11.1), then f, = —(#*/2m,)V? — Ze* /4meyr; and
2; = & /4megry;. :

Condon and Slater showed that the n-electron integral (D’|B|D) can be reduced tol6

-~ " - - " - —— - 1 a - - —




Condon and Slater showed that the n-electron integral {D'|B|D ) can be reduced to
sums of certain one- and two-electron integrals. The derivation of these Condon-Slater
formulas uses the determinant expression of Prob. 8.22 together with the orthonormal-
ity of the spin-orbitals. (See Parr, pp. 23-27 for the derivation.) Table 11.3 gives the
Condon—Slater formulas.

In Table 11.3, each matrix element of &, involves summation over the spin coordi-
nates of electrons 1 and 2 and integration over the full range of the spatial coordinates of
electrons 1 and 2. Each matrix element uff, involves summation over the spin coordinate
of electron 1 and integration over its spatial coordinates. The variables in the sums and
definite integrals are dummy variables.

TABLE 11.3 The Condon-Slater Rules

D and D' differ by

H = =1 - j
no spin-orbitals 2 (w(MIALMD) 3 S (1) (2) gl (2))
=] i=lj=1
:(] ”a 2]|’3|2|f {:]]”4 ]}]
1
one spin-orbital (Liﬁil}ifﬂ“n(l}} : 1[( (1 )ag 811|“n{1)ﬂ( )
=7
”.—:: i Hy, "{.H;r(I]”a’(2)|§12|u}'“}MH{Z}H
two Spj‘.ﬂ—beitﬁiS 0 I::H;z{:l:]“;:—1{2)|§I3|”u( I }“n--l(z}}
# Uy M” 1 cn Up—1 _{“:T{ ”n ]( Elun I(I}u .':'
three or more 0 0

spin-orbitals
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TABLE 11.3 The Condon-Slater Rules

D and D’ differ by

-~
-
-
e d
[—

no spin-orbitals > (u;(1)

u;(1)) . ) EL ‘::1-15( | )“;(3) 1812w ( 1 );{;(2)>

—{uy(1 )f{i(z)‘flzlﬂj( )u;(2))]

-y
Il
i

=
|

o
as

ik

n=

one spin-orbital (1 )if1|“u( 1)) 2} [ (un(1 )'fj(z)éélz‘“n(l)’f‘_;(z))

i,
u;l > Uy o (”:r(l)!’{}'(2)'§12|u}'(l )“n(z))}
two spin—orbitals 0 ':”;i( ] J”:!“ I (2) L‘?]E‘I'fn( I )Hf?—l(z):’
M:z = iy, “:z—] 7 Up—1 R { “;;(1 )“.:1—1(2)Igllgun—l(l )“n(z)}
three or more 0 0

spin-orbitals

no mismatches = leading term of identical determinants
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FABLE 11.3 The Condon-Slater Rules

D and D’ differ by

: . il A | leading terms of
no spin-orbitals (e (1) | f1]u;(1)) identical

B determinants

one spin-orbital (i (1) F1]ua (1))
u, & u,
two spin-orbitals 0
U, 7 Uy Up_1 7 Upy_
three or more 0

spin-orbitals "




1 — electron operators give
2h,, + 2hg; + 2h,

where hAA is: C Thcc | hcc
1 Z
1V :<A(1)|__V12_Z A1) > ‘
2 M 1u
= the kinetic energy and potential Th h
energy of attraction to all nuclei for B BB | BB
an electron in orbital A ‘ l
Than | haa




i and j are different

spin orbitals but may
be same space orbital

D and D’ differ by

1
no spin-orbitals D> (w(1)u(2) 812

leading terms of No self-i J:Uu tlj>i - o | \
identical determinants _ - o ocn O (g ( ] )l.{._,‘(z)[g IE!“)( | Ju;(2) .}]

n—|

one spin-orbital 21 L (un(1 )‘-‘j(z)iélzlun( I )“j(z)}
377
u;z 7 Uy 7 <u;r( l )‘-{;‘(2)I§12,“;'(1 )“21(2)”
two Spil’l-OI'bitZilS " “n(l ”n l ‘gl’ ”n l )un | (7)
u:! > Uy, “:?_1 7 Un—) I < “;z(l )“.-rz—l (2) glll Uy— ( 1 )“n(:2 ) :'

three or more 0
spin-orbitals 7
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Electron repulsion is reduced between electron with same m_ as seen
for He(1s,2s)

Japntlgg et 40, +4 ), + A - 2Kg, 2K, - 2K,
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