The same will be true for any one-electron operator, so for the electron-nuclear attraction

$$
\left.<-\frac{2}{r_{1 n}}>=\left\langle-\frac{2}{r_{2 n}}\right\rangle=2<-\frac{2}{r_{1 n}}\right\rangle
$$

The 2-electron operator $1 / r_{12}$ is different:

$$
<\frac{1}{r_{12}}>=\int 1 s(1) 1 s(2) \frac{1}{r_{12}} 1 s(1) 1 s(2) d \tau_{1} d \tau_{2}=J_{1 s, 1 s}
$$

J_{ij} repulsion integrals are called "Coulomb integrals";
Here they are simply the repulsion of two 1s clouds of negative charge, that happen to be superimposed in this case.

Thus, for the He ground state:
$E_{\text {ground }}=\mathbf{2} h_{1 \mathrm{~s}}+J_{1 \mathrm{~s}, 1 \mathrm{~s}}$
where $h_{1 s}=$ is a sum of one-electron operators:
the KE + electron-nuclear attraction for a 1s electron

Next consider the Helium 1s2s configuration

$$
\begin{gathered}
\Psi_{\text {singlet }}=[1 s(1) 2 s(2)+2 s(1) 1 s(2)][\alpha(1) \beta(2)-\beta(1) \alpha(2)] \\
\Psi_{\text {singlet }}=[1 s(1) 2 s(2)+2 s(1) 1 s(2)]\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\} \\
\langle E\rangle_{\text {singlee }}=[<1 s(1) 2 s(2)+2 s(1) 1 s(2)]\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\}|H|[1 s(1) 2 s(2)+2 s(1) 1 s(2)]\{\alpha(1 \\
\left.\langle E\rangle_{\text {singlet }}=[11 s(1) 2 s(2)+2 s(1) 1 s(2)]\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\}|H|[1 s(1) 2 s(2)+2 s(1) 1 s(2)]\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\}\right\rangle
\end{gathered}
$$

Again, H does not have spin coordinates , ignoring spin-orbit coupling, so:
$E_{\text {singlet }}=\langle s(1) 2 s(2)+2 s(1) 1 s(2)| H|s(1) 2 s(2)+2 s(1) 1 s(2)\rangle$
Now the 1-electron part has to be $\mathbf{h}_{1 s} \mathbf{+} \mathbf{h}_{\mathbf{2 s}}$ but appears to be twice that at this point. Must normalize the linear combination,

Normalization

Whenever two orthonormal functions are added, e.g., $|A\rangle+|B\rangle$, the overlap is no longer 1 , but $(\langle A|+\langle B|)|(|A\rangle+|B\rangle)$

$$
\begin{aligned}
& =N^{2}(\langle A \mid A\rangle+\langle B \mid B\rangle+\langle A \mid B\rangle+\langle B \mid A\rangle \\
& =1+1+0+0=2
\end{aligned}
$$

So normalization constant squared $=1 / 2$ norm const $=\mathbf{2}^{-1 / 2}=0.707$
Generally, adding N orthonormal functions with equal weight gives norm const $=\mathrm{N}^{-1 / 2}$
but the 2-electron part has an extra part due to electron exchange

$$
\begin{aligned}
& \left.<1 / r_{12}\right\rangle=\frac{1}{2}\langle 1 s(1) 2 s(2)+2 s(1) 1 s(2)| \frac{1}{r_{12}}|1 s(1) 2 s(2)+2 s(1) 1 s(2)\rangle \\
& \left.=\langle 1 s(1) 2 s(2)| \frac{1}{r_{12}}|1 s(1) 2 s(2)\rangle+\langle 1 s(1) 2 s(2)| \frac{1}{r_{12}} \right\rvert\, \begin{array}{c}
\text { exchanged } 1 \text { and } 2 \\
2 s(1) 1 s(2)\rangle
\end{array} \\
& =\langle 1 s(1) 1 s(1)| \frac{1}{r_{12}}|2 s(2) 2 s(2)\rangle+\langle 1 s(1) 2 s(1)| \frac{1}{r_{12}}|1 s(2) 2 s(2)\rangle
\end{aligned}
$$

Order does not matter (just multiplying by $1 / r_{12}$). Writing this way makes it easier to visualize

$$
=\quad J_{1 s, 2 \mathrm{~s}} \quad+\quad \mathrm{K}_{1 \mathrm{~s}, 2 \mathrm{~s}}
$$

where $\mathbf{K}_{1 s, 2 s}$ is called an exchange integral because it arises only because of the requirement that the electrons must exchange.
J_{ij} is classical; It is simply the Coulombic repulsion of $1 \mathrm{~s}(1)^{2}$ and $2 \mathrm{~s}(2)^{2}$ negative clouds of charge.
K_{ij} is the repulsion of two ij clouds: $1 \mathrm{~s}(1) 2 \mathrm{~s}(1)$ and $1 \mathrm{~s}(2) 2 \mathrm{~s}(2)$

Triplet State

$\left.<1 / r_{12}\right\rangle=\frac{1}{2}\langle 1 s(1) 2 s(2)-2 s(1) 1 s(2)| \frac{1}{r_{12}}|1 s(1) 2 s(2)-2 s(1) 1 s(2)\rangle$
$=\langle 1 s(1) 2 s(2)| \frac{1}{r_{12}}|1 s(1) 2 s(2)\rangle-\langle 1 s(1) 2 s(2)| \frac{1}{r_{12}}|2 s(1) 1 s(2)\rangle$
$=\langle 1 s(1) 1 s(1)| \frac{1}{r_{12}}|2 s(2) 2 s(2)\rangle-\langle 1 s(1) 2 s(1)| \frac{1}{r_{12}}|1 s(2) 2 s(2)\rangle$
Now the cross terms are negative, because the space function is antisymmetric.
$=\quad \mathrm{J}_{1 \mathrm{~s}, 2 \mathrm{~s}}$
minus
$\mathrm{K}_{1 \mathrm{~s}, 2 \mathrm{~s}}$

The triplet state is LOWER than the singlet state!!! because it can be proved that all I_{ij} and K_{ij} integrals are positive, but $\mathrm{K}_{\mathrm{ij}}<\mathrm{J}_{\mathrm{ij}}$.
J_{ij} is classical; It is simply the Coulombic repulsion of two negative clouds of charge described by the squares of the orbitals K_{ij} is the repulsion of two ij clouds e.g., $1 \mathrm{~s}(1) 2 \mathrm{~s}(1)$

Slater Determinants notation for the same functions:

$$
\begin{gathered}
\Psi_{\text {ground }}=\varphi_{1 s}(1) \bar{\varphi}_{1 s}(2)-\bar{\varphi}_{1 s}(1) \varphi_{1 s}(2) \\
\Psi_{\text {ground }}=\left|\begin{array}{ll}
\varphi_{1 s}(1) & \bar{\varphi}_{1 s}(1) \\
\varphi_{1 s}(2) & \bar{\varphi}_{1 s}(2)
\end{array}\right| \\
\Psi=A(1) B(2)-B(1) A(2) \\
\Psi_{\text {ground }}=\left|\begin{array}{ll}
A(1) & B(1) \\
A(2) & B(2)
\end{array}\right|=\left|\begin{array}{cc}
A(1) & A(2) \\
B(1) & B(2)
\end{array}\right| \equiv|A B|
\end{gathered}
$$

For 4 electrons:
$|A B C D|$ means a a slater determinant and the electron numbering in each term is $1,2,3,4$

Antisymmetry for more than 2 electrons

Generic 3 electron case:

$$
\begin{aligned}
& \Psi=A(1) B(2) C(3) \ldots-B(1) A(2) C(3) \ldots-C(1) B(2) A(3) \ldots \\
& \Psi=\left|\begin{array}{lll}
A(1) & A(2) & A(3) \\
B(1) & B(2) & B(3) \\
C(1) & C(2) & C(3)
\end{array}\right| \equiv\left|\begin{array}{ccc}
A(1) & B(1) & C(1) \\
A(2) & B(2) & C(2) \\
A(3) & B(3) & C(3)
\end{array}\right| \equiv|A B C| \\
& \left.\Psi^{*} \Psi=\langle | A B C|\| A B C|\right\rangle
\end{aligned}
$$

Note that it does not matter whether: columns have same electron number and rows have same orbital, or vice versa

Normalization (assuming orthonormal orbitals)

There are \mathbf{N} ! (\mathbf{N} factorial) terms for an N -electron Slater determinant
Example of 3 electrons: $3!=6$
$A B C-A C B+B C A-B A C+C A B-C B A$
Overlap integral is:
$\angle A B C-A C B+B C A-B A C+C A B-C B A \mid A B C-A C B+B C A-B A C+C A B-C B A>=?$
$=\angle A B C \mid A B C>=\langle A| A>\angle B|B><C| C\rangle=(1)(1)(1)$ because orbitals are 1 -electron functions
but, if there is only one mismatch, e.g., <ABC|ACB>
$=\langle A \mid A\rangle\langle B \mid C\rangle\langle C \mid B\rangle=(1)(0)(0)=0$

ab initio Calculations

meaning literally: from the beginning

In practice means: no approximations are made in the mathematical operations, although all calculations are more or less approximate, depending on the number of variational parameters chosen.

$$
H=\sum_{i}-\frac{1}{2} \nabla_{i}^{2}-\sum_{i, \mu} \frac{Z_{\mu}}{r_{i \mu}}+\sum_{i>j} \frac{1}{r_{i j}}+\sum_{i}-\frac{1}{2} \nabla_{\mu}^{2}+\sum_{\mu, v} \frac{Z_{\mu \nu}}{r_{\mu \nu}}
$$

$$
\begin{aligned}
& H=\sum_{i}-\frac{1}{2} \nabla_{i}^{2}-\sum_{i, \mu} \frac{Z_{\mu}}{r_{i \mu}}+\sum_{i>j} \frac{1}{r_{i j}}+\sum_{i}-\frac{1}{2} \nabla_{\mu}^{2}+\sum_{\mu, v} \frac{Z_{\mu v}}{r_{\mu \nu}} \\
& \underbrace{\begin{array}{l}
\text { electron } \\
\text { kinetic E } \\
\text { operators }
\end{array}}_{\text {ONE-electron }} \begin{array}{l}
\begin{array}{l}
\text { electron- } \\
\text { nuclear } \\
\text { attraction } \\
\text { operators }
\end{array} \\
\text { TWO-electron }
\end{array} \\
& \text { nuclear nuclear- } \\
& \text { kinetic E nuclear } \\
& \begin{array}{l}
\text { = } \begin{array}{l}
\text { e for electronic } \\
\text { energy at a fixed } \\
\text { geometry }
\end{array} \\
\text { = a constant }
\end{array} \\
& \text { for electronic } \\
& \text { energy at a fixed } \\
& \text { geometry } \\
& \text { Is added to the } \\
& \text { electronic energy } \\
& \text { at the end }
\end{aligned}
$$

Hartree Self-Consistent Field (SCF)

Wavefunction $=$ single product of orthonormal spin orbitals

$A \bar{A} B \bar{B} C \bar{C} \ldots \quad$ where bar on top means β spin

This preceded the Hartree-Fock SCF.

What is wrong with this?

Not anti-symmetric to interchange of electron coordinates,
Fock was the one who extend the method for Slater Determinants.

Hartree-Fock Self Consistent Field (SCF

Wavefunction $=$ single Slater determinant of orthonormal spin orbitals $\quad(N!)^{-1 / 2}|A \bar{A} B \bar{B} C \bar{C} \ldots|$ HF-SCF total energy: ***

Simplifications:

1. ${ }^{* * *}$ Unnecessary to have a determinant on both sides because of double counting of permutations
2. Integrate over electrons ONLY because :
nuclear kinetic energy assumed zero (Born-Oppenheimer)
3. and therefore nuclear-nuclear repulsion is a constant to be added after the purely electronic energy is determined.
4. H does not contain spin (a good approximation for light atoms)

Consider the example where there are $6!=720$ permutations on the right, showing only the permutation of electrons 1 and 2

$$
\begin{aligned}
& E_{\text {trial }}=(N!)^{-1 / 2}<A \bar{A} B \bar{B} C \bar{C}|H||A \bar{A} B \bar{B} C \bar{C}|> \\
& =<\mathbf{A} \overline{\mathbf{A}} B \bar{B} C \bar{C}|H| \mathbf{A} \overline{\mathbf{A}} B \bar{B} C \bar{C}-\overline{\mathbf{A}} \mathbf{A} B \bar{B} C \bar{C}-\ldots>
\end{aligned}
$$

$$
\langle\mathrm{A}(1)| \mathrm{h}(1)|\mathrm{A}(1)\rangle\langle\mathrm{A}(2) \mid \mathrm{A}(2)\rangle\langle\alpha| \beta><\beta|\alpha\rangle\langle\mathrm{A}(3) \mid \mathrm{A}(3)\rangle\langle\mathrm{A}(4) \mid \mathrm{A}(4)\rangle \ldots .
$$ just for the one-electron part of \boldsymbol{H} for electron 1 .

This illustrates most of the permutations give zero because of either spin or space orthogonality mismatches (when an electron is in a different spin-orbital on the two sides of the integral).

Such mismatches are may only be non zero if the corresponding operator in the Hamiltonian intervenes.

Slater Condon Rules

Slater and Condon articulated rules for the few cases on non zero element.

11.8 The Condon-Slater Rules

In the Hartree-Fock approximation, the wave function of an atom (or molecule) is a Slater determinant or a linear combination of a few Slater determinants [for example, Eq. (10.44)]. A configuration-interaction wave function such as (11.17) is a linear combination of many Slater determinants. To evaluate the energy and other properties of atoms and molecules using Hartree-Fock or configuration-interaction wave functions, we must be able to evaluate integrals of the form $\left\langle D^{\prime}\right| \hat{B}|D\rangle$, where D and D^{\prime} are Slater determinants of orthonormal spin-orbitals and \hat{B} is an operator.

Each spin-orbital u_{i} is a product of a spatial orbital θ_{i} and a spin function σ_{i}, where σ_{i} is either α or β. We have $u_{i}=\theta_{i} \sigma_{i}$ and $\left\langle u_{i}(1) \mid u_{j}(1)\right\rangle=\delta_{i j}$, where $\left.\left\langle u_{i}(1)\right| u_{j}(1)\right)$ involves a sum over the spin coordinate of electron 1 and an integration over its spatial coordinates. If u_{i} and u_{j} have different spin functions, then (10.12) ensures the orthogonality
u_{i} and u_{j}. If u_{i} and u_{j} have the same spin function, their orthogonality is due to the arthogonality of the spatial orbitals θ_{i} and θ_{j}.

For an n-electron system, D is

$$
D=\frac{1}{\sqrt{n!}}\left|\begin{array}{cccc}
u_{1}(1) & u_{2}(1) & \ldots & u_{n}(1) \tag{11.76}\\
u_{1}(2) & u_{2}(2) & \ldots & u_{n}(2) \\
\vdots & \vdots & \ddots & \vdots \\
u_{1}(n) & u_{2}(n) & \ldots & u_{n}(n)
\end{array}\right|
$$

An example with $n=3$ is Eq. (10.40). D^{\prime} has the same form as D except that $u_{1}, u_{2}, \ldots, u_{n}$ are replaced by $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$.

If u_{i} and u_{j}. If u_{i} and u_{j} have the same spin function, their orthogonality is due to the rthogonality of the spatial orbitals θ_{i} and θ_{j}.

For an n-electron system, D is

$$
D=\frac{1}{\sqrt{n!}}\left|\begin{array}{cccc}
u_{1}(1) & u_{2}(1) & \ldots & u_{n}(1) \tag{11.76}\\
u_{1}(2) & u_{2}(2) & \ldots & u_{n}(2) \\
\vdots & \vdots & \ddots & \vdots \\
u_{1}(n) & u_{2}(n) & \ldots & u_{n}(n)
\end{array}\right|
$$

An example with $n=3$ is Eq. (10.40). D^{\prime} has the same form as D except that $u_{1}, u_{2}, \ldots, u_{n}$ are replaced by $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$.

We shall assume that the columns of D and D^{\prime} are arranged so as to have as many as possible of their left-hand columns match. For example, if we were working with the Slater determinants $\left|1 s \bar{s} 2 s 3 p_{0}\right|$ and $\left|1 s \overline{1} \bar{s} 3 p_{0} 4 s\right|$, we would interchange the third and fourth columns of the first determinant (thereby multiplying it by -1) and let $D=\left|1 s \overline{1} \bar{s} 3 p_{0} 2 s\right|$ and $D^{\prime}=\left|1 s \bar{s} 3 p_{0} 4 s\right|$.

The operator \hat{B} typically has the form

$$
\begin{equation*}
\hat{B}=\sum_{i=1}^{n} \hat{f}_{i}+\sum_{i=1}^{n-1} \sum_{j>i} \hat{g}_{i j} \tag{11.77}
\end{equation*}
$$

where the one-electron operator \hat{f}_{i} involves only coordinate and momentum operators of electron i and the two-electron operator $\hat{g}_{i j}$ involves electrons i and j. For example, if \hat{B} is the atomic Hamiltonian operator (11.1), then $\hat{f}_{i}=-\left(\hbar^{2} / 2 m_{e}\right) \nabla_{i}^{2}-Z e^{2} / 4 \pi \varepsilon_{0} r_{i}$ and $\hat{g}_{i j}=e^{2} / 4 \pi \varepsilon_{0} r_{i j}$.

Condon and Slater showed that the n-electron integral $\left\langle D^{\prime}\right| \hat{B}|D\rangle$ can be reduced to ${ }^{16}$

Condon and Slater showed that the n-electron integral $\left\langle D^{\prime}\right| \hat{B}|D\rangle$ can be reduced to sums of certain one- and two-electron integrals. The derivation of these Condon-Slater formulas uses the determinant expression of Prob. 8.22 together with the orthonormality of the spin-orbitals. (See Parr, pp. 23-27 for the derivation.) Table 11.3 gives the Condon-Slater formulas.

In Table 11.3, each matrix element of \hat{g}_{12} involves summation over the spin coordinates of electrons 1 and 2 and integration over the full range of the spatial coordinates of electrons 1 and 2 . Each matrix element of \hat{f}_{1} involves summation over the spin coordinate of electron 1 and integration over its spatial coordinates. The variables in the sums and definite integrals are dummy variables.

TABLE 11.3 The Condon-Slater Rules

D and D^{\prime} differ by	$\left\langle D^{\prime}\right\| \sum_{i=1}^{n} \hat{f}_{i}\|D\rangle$	$\left\langle D^{\prime}\right\| \sum_{i=1}^{n-1} \sum_{j>1} \hat{g}_{i j}\|D\rangle$
no spin-orbitals	$\sum_{i=1}^{n}\left\langle u_{i}(1)\right\| \hat{f}_{1}\left\|u_{i}(1)\right\rangle$	$\begin{aligned} \sum_{i=1}^{n-1} \sum_{j>1}[& \left\langle u_{i}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{i}(1) u_{j}(2)\right\rangle \\ & \left.-\left\langle u_{i}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{j}(1) u_{i}(2)\right\rangle\right] \end{aligned}$
one spin-orbital $u_{n}^{\prime} \neq u_{n}$	$\left\langle u_{n}^{\prime}(1)\right\| \hat{f}_{1}\left\|u_{n}(1)\right\rangle$	$\begin{aligned} & \sum_{j=1}^{n-1}\left[\left\langle u_{n}^{\prime}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{n}(1) u_{j}(2)\right\rangle\right. \\ & \left.-\left\langle u_{n}^{\prime}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{j}(1) u_{n}(2)\right\rangle\right] \end{aligned}$
two spin-orbitals	0	$\left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right\| \hat{g}_{12}\left\|u_{n}(1) u_{n-1}(2)\right\rangle$
$u_{n}^{\prime} \neq u_{n}, u_{n-1}^{\prime} \neq u_{n-1}$		$-\left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right\| \hat{g}_{12}\left\|u_{n-1}(1) u_{n}(2)\right\rangle$
three or more spin-orbitals	0	0

TABLE 11.3 The Condon-Slater Rules

D and D^{\prime} differ by	$\left\langle D^{\prime}\right\| \sum_{i=1}^{n} \hat{f_{i}}\|D\rangle$	$\left\langle D^{\prime}\right\| \sum_{i=1}^{n-1} \sum_{j>1} \hat{g}_{i j}\|D\rangle$
no spin-orbitals	$\sum_{i=1}^{n}\left\langle u_{i}(1)\right\| \hat{f}_{1}\left\|u_{i}(1)\right\rangle$	$\sum_{i=1}^{n-1} \sum_{j>1}\left[\left\langle u_{i}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{i}(1) u_{j}(2)\right\rangle\right.$
		$\left.-\left\langle u_{i}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{j}(1) u_{i}(2)\right\rangle\right]$
one spin-orbital	$\left\langle u_{n}^{\prime}(1)\right\| \hat{f}_{1}\left\|u_{n}(1)\right\rangle$	$\sum_{j=1}^{n-1}\left[\left\langle u_{n}^{\prime}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{n}(1) u_{j}(2)\right\rangle\right.$
$u_{n}^{\prime} \neq u_{n}$		$\left.-\left\langle u_{n}^{\prime}(1) u_{j}(2)\right\| \hat{g}_{12}\left\|u_{j}(1) u_{n}(2)\right\rangle\right]$
two spin-orbitals	0	$\left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right\| \hat{g}_{12}\left\|u_{n}(1) u_{n-1}(2)\right\rangle$
$u_{n}^{\prime} \neq u_{n}, u_{n-1}^{\prime} \neq u_{n-1}$		$-\left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right\| \hat{g}_{12}\left\|u_{n-1}(1) u_{n}(2)\right\rangle$
three or more spin-orbitals	0	0

no mismatches = leading term of identical determinants
D and D^{\prime} differ by

$$
\langle p| \sum_{i} \hat{\|}|\rho\rangle
$$

no spin-orbitals

$$
\sum_{i=1}^{n}\left\langle u_{i}(1)\right| \hat{f}_{1}\left|u_{i}(1)\right\rangle
$$

leading terms of identical determinants
one spin-orbital
$\left\langle u_{n}^{\prime}(1)\right| \hat{f}_{1}\left|u_{n}(1)\right\rangle$
$u_{n}^{\prime} \neq u_{n}$
two spin-orbitals
$u_{n}^{\prime} \neq u_{n}, u_{n-1}^{\prime} \neq u_{n-1}$
three or more
spin-orbitals

1 - electron operators give $2 h_{A A}+2 h_{B B}+2 h_{C C}$
where $h_{A A}$ is:

$$
\left.\mathrm{h}_{\mathrm{AA}}=<\mathrm{A}(1)\left|-\frac{1}{2} \nabla_{1}^{2}-\sum_{\mu} \frac{Z_{1 \mu}}{r_{1 \mu}}\right| \mathrm{A}(1)\right\rangle
$$

= the kinetic energy and potential energy of attraction to all nuclei for an electron in orbital A

D and D^{\prime} differ by

no spin-orbitals
leading terms of identical determinants
one spin-orbital
$u_{n}^{\prime} \neq u_{n}$
two spin-orbitals
$u_{n}^{\prime} \neq u_{n}, u_{n-1}^{\prime} \neq u_{n-1}$

$$
\begin{aligned}
& \sum_{j=1}^{n-1}\left[\left\langle u_{n}^{\prime}(1) u_{j}(2)\right| \hat{g}_{12}\left|u_{n}(1) u_{j}(2)\right\rangle\right. \\
& \left.-\left\langle u_{n}^{\prime}(1) u_{j}(2)\right| \hat{g}_{12}\left|u_{j}(1) u_{n}(2)\right\rangle\right] \\
& \left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right| \hat{g}_{12}\left|u_{n}(1) u_{n-1}(2)\right\rangle \\
& \quad-\left\langle u_{n}^{\prime}(1) u_{n-1}^{\prime}(2)\right| \hat{g}_{12}\left|u_{n-1}(1) u_{n}(2)\right\rangle
\end{aligned}
$$

three or more
spin-orbitals

2 - electron operators give
$\mathrm{J}_{\mathrm{AA}}+\mathrm{J}_{\mathrm{BB}}+\mathrm{J}_{\mathrm{CC}}+4 \mathrm{~J}_{\mathrm{BA}}+4 \mathrm{~J}_{\mathrm{AC}}+4 \mathrm{~J}_{\mathrm{BC}}-2 \mathrm{~K}_{\mathrm{BA}}-2 \mathrm{~K}_{\mathrm{CA}}-2 \mathrm{~K}_{\mathrm{BC}}$
Electron repulsion is reduced between electron with same m_{s} as seen for $\mathrm{He}(1 \mathrm{~s}, 2 \mathrm{~s})$

