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2. Non-Linear Variation Method. For the Be'? ion:
(a) Write down the Hamiltonian.

(b) Assume a trial wavefunction for the two electrons,

Y (1,2)=1s(1)1s(2) = exp(-ary)exp(-ar,)
where a is an adjustable constant (sometimes called an “effective nuclear charge”). From information on
this type of problem for the He atom, (the kinetic energy, T = o>/2 and potential energy

V =-aZ +5/8a (in a.u.) for each orbital given in Lecture 7 on the website, find the value of o that gives
the "best" wavefunction, and the energy given by this wavefunction.

(¢) Verify that your answer obeys the virial theorem.

(d) Compare the answer to the exact answer given by that the sum of the ionization energies of Be*.

V=-0Z +5/8a (1n a.u.)

What is this?



Helium ground state energy:
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Hamiltonian: H=T,+T, ——- I
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V =-0aZ +5/8a (1n a.u.)

What is this?

Levine: 9.4 p243

T=a?/2 (why?) Y=e™

because T = -(1/2) 2"d derivative of ¥ = a%/2

V =-aZ (why?)

electron-nuclear attraction —

because <1/r> = gets larger as ¥ becomes smaller

= ?
VEIectron repulsion 5/8 a (Why)
because <e?/r,,> = gets larger as ¥ becomes smaller
(the two electron will be closer on average)



The He Atom

Another interesting example is the He atom. Consider the simple

product function, -¥N e
Y= Ne e

The energy obtained with various wavefunctions are as follows:

W y

K. = 2 (the right value for He+) -2.75
X = 1.6875" -2.848
Hartree SCF (table of numbers) -2.86
Exact (Experiment) -2.90

The Hartree SCF wavefunction, whose only restriction is that

5[’ = product of orbitals ?é (1 C}% (2) and allows any shape
whatsoever for Q{% . cannot give the right answer! This proves, to me
anyway, that we must think of the electrons in atoms as point charges
which do dodge one another because of the repulsion. The motion is
correlated; they, to some extent, stay on opposite sides of the atom.

doing so, the energy is lowered by .04 a.u. = “1lev = 23 kcal/mole.



Helium ground state, and singlet vs triplet excited state

The notation of spin orbital is often used for compactness:

¢ (1) =1s(De (1)
o, (D) =1s() S (1)

For example the ground state function for He can be written as:

Dis (1) 4315 (2) B (513 (1) D (2)
or

=1s(D1s(2)[a (@) £(2) - D (2)]

The space-spin separated form is convenient for understanding the
triplet state of a 2-electron system. This factorization, however,
cannot be done for 3 or more electrons.



Now consider the lowest excited states of He, 1s2s, an example of
an open shell system.

Here one must consider that electron exchange is also between the
spatial orbitals as well as the spin functions.

Because we may factor into space times spin functions, it is
obvious that one may achieve an antisymmetric function two
general ways:

(1) space = sym, spin= antisymmetric to permutation
2) space = antisym, spin=symmetric to permutation

There is only 1 way to achieve the (1), so it is called a singlet state:

aingter = [15(1)25(2) + 25(1)1s(2)] [a(1) 5(2) - D (2)]




There are 3 ways to have a symmetric spin function while
having an antisymmetric space function, however:

LIJtriplet:
[15(1)2s(2) — 25(1)1s(2)][a (D) (2)], M;=1/2 + 1/2 =1

[1s(1)2s(2) - 2s(Wis(QI[a D) B2) + SLa(2)], Mg=1/2 - 1/2 =0

[1s(1)2s(2) — 2s(D1s(2)[BQL) B(2)], M¢=-1/2 - 1/2=-1

This obeys the universal rule of quantum angular momentum: M¢=-S, -S+1,-S+2 ... +S
i.e., 25+1 values.

Notice that the antisymmetric space function vanishes whenever the two electron
are at the same point in space—ENTIRELY because of the wavefunction, meaning

that the two electrons with same m_avoid each other—

NOT because of Coulombic repulsion, but because of the Pauli exclusion principle

This is qualitatively why TRIPLET STATES have LOWER energy than the corresponding
singlet state.
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What is left out here?

We are going to assume that H has no spin coordinates;

What phenomena will be left out of the picture?
spin-orbit coupling (stronger than e-e repulsion for high 2)
but negligible for H, He
and splitting of angular momentum statesin strong magnetic fields



<E>={1s1)1s(2) x [,5 H| 1s(1)1s(2) x
1)

But we are going to assume that H has no spin coordinates
<E>=({1s()1s(2)[a (D) B(2) - O (2] H |1s()Is(2)[x (D) 5(2) - BDa(2)])
= ({1s(D1s(2)|H [1s(1)15(2)) (2(B(2) - D (2) | (D) 5(2) - fD)a(2))

<T, >= <1S (1) \T1‘15(1)> X <1S(2) \15(2)> = Tps

<T,>=<T,>s0<T >=2T,

< E>={1s01s2)[z () A(2) - fOaH[1sOIs(D)[e)A(2) - S (2)])
~ (15()15(2)|H[15(W1s(2)) (@D A(2) - BO(2) | () B(2) - BD(2))

because H is purely a spatial operator (ignoring spin orbit coupling)



The same will be true for any one-electron operator,
so for the e-n attraction

2 2 2
<——>=<—>=2<—>
I I I

n

n n

The 2-electron operator 1/r,, is different:

<1 5= [15(Ws(2) —1s(WIS()dr,d 7, = Iy

I, I,
J; repulsion integrals are called “Coulomb integrals”;

They are simply the repulsion of two 1s clouds of negative
charge, that happen to be superimposed in this case.



Thus, for the He ground state:
E = 2h15+ J1s,1s

ground

where h, .= is a sum of one-electron operators:

the KE + electron-nuclear attraction for a 1s electron



Next consider the Helium 1s2s configuration

aingler = [15(1)25(2) + 25(1)1s(2)] [(1) 5(2) - D (2)]

Ejqps singlet = ([1s()1s(2) + 2s(D1s(2)][(D) A(2) - D (2)]H [[Ls(D)1s(2) + 2sWis(2)][er (D) A(2) - BD)a(2)])

Again, H does not have spin coordinates, ignoring spin-orbit coupling,
SO:

Eingiet = (5(1)25(2) + 2s(1)1s(2)|H| s(1)2s(2) + 25(1)1s(2))

singlet —
Now the 1-electron part has to be h, + h,  but appears to
be twice that at this point. Must normalize the linear
combination,



Normalization

Whenever two orthonormal functions are
added |A>+ |B>, the overlap is no longer 1,
but (<A| +<B|) | (|A>+ |B>)

= N?(<A|A> + <B|B> + <A|B> + <B|A>

= 1 + 1 + O + 0=2

So normalization constant square =1/2
N =21/2=0.707



but the 2-electron part has an extra part due to electron exchange

<1/, >= %(13(1)23(2) ; 2s(1)1s(2)\i| 15(1)25(2) + 25()1s(2))

12
exchanged 1 and 2

<1s(1)25(2)\—|1s(1)25(2)> <1s(1)23(2)\—|23(1)13(2)>

12 12
Order does not matter (just multiplying by 1/r,,)

= <1s(1)1s(1)\r—| 25(2)2s(2)) + <1s(1)23(1)\—| 15(2)2s(2))

J1s,25 T Kls,Zs

where K1S »s is called and exchange integral because it arises only
because of the requirement that the electrons must exchange.



Triplet State
<l/r, >= %(15(1)25(2) — 23(1)13(2)\%| 15(1)2s(2) — 2s(1)1s(2))

12

- <1s(1)2s(2)\ri| 15(1)25(2)) - <1s(1)28(2)\ri| 25(1)1s(2))

12 12

= <1s(1)ls(1)\ri| 25(2)2s(2)) - <1s(1)25(1)\ri| 15(2)2s(2))

12 12

= J15,25 minus Kls,Zs

The triplet state is LOWER than the singlet state!!!
because it can be proved that all J; and K;; integrals are positive,
but K <J;.

J;is classical; Itis simply the Coulombic repulsion of two
negative clouds of charge described by the squares of the orbitals
K;; is the repulsion of two ij clouds e.g., 1s(1)2s(1)



Generically:
¥ = A1)B(2)C(3)...- BWA(2)C(3)...-C)B(2)A®3)...
AQD AQ) A(3)
¥ =|B(1) B(2) B(3)|=|ABC]|
C(l) C(2) C(3)
(|ABC|||ABC])
Note that it does not matter whether:

columns have same electron number and rows have same orbital,
or vice versa




Normalization (assuming orthonormal orbitals)

There are N! (N factorial) terms for an N-electrons Slater determinant

31=6

ABC - ACB + BCA—-BAC + CAB - CBA

<ABC—-ACB + BCA—-BAC+ CAB—-CBA| ABC—ACB + BCA—-BAC + CAB—CBA> =?
= <ABC | ABC> = <A|A><B|B><C|C>=(1)(1)(1)

but, if there is only one mismatch, e.g., <ABC | ACB>
= <A|A><B|C><C|B>=(1)(0)(0) =0



Slater Determinants notation for the same for functions:
Foround = s Do (2) — o1 D5 (2)
_|Pis 1) @)
T s (2) 3(2)
Generically:
Y =A1)B(2)-B(Q)A(2)
Al B(@Q)| |AQ A(2)

ground — A(Z) B(Z) = B(l) B(Z) E‘AB‘

Y

Y

Where |ABCD| means a a slater determinant and the
electron numbering in each termis 1,2,3,4



Dis (1) als (2) o als (1) Dis (2)
(015 (1) als (1)
Dis (2) als (2)




W = [150)25(2) + 2sW1s([2 W A(2) - BB (2)]
=1s(D)x(1)2s(2) 5(2) —1s(1)2s(2) (D) x (2)
+25(D)ax(1)1s(2) S(2) — 2s(1) S(D)1s(2)x(2)

= 01, (D92 (2) — @15 (D)5 (2)

+ 0,5 (D)5 (2) — 955 (D5 (2)
o) (D) | (D) o (D)

Do (2) 525 (2) ' Dys (2) als (2)










Hartree SCF method with LCAO
Ab initio Calculations
1. Write down H
2. Select a trial wavefunction *** with variational parameters.

LCAO generally means vary only the coef.
3.

There are 3 ways to have a symmetric spin function while having an antisymmetric
space function, however:






The 2-electron operator 1/r,, is different:

<1 5= [15(W1s(2) —1s(WIS()dr,d 7, = Iy

Ip) £y
J; repulsion integrals are called “Coulomb integrals”;

They are simply the repulsion of two 1s clouds of negative
charge,

that happen to be superimposed in this case.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

