Chem 514 Handout #7 October, 1985

More on Atomic Orbitals

1. Nature of the solutions |

We won't be concerned with the details of "solving" the Schrodinger
BEquation for the H atom in this course, but, it's not too hard to show
that one may break it down into 3 separate equations, each depending on
only one of the 3 variables r, @ , and ¢ Whenever this hagpens, one
finds that the well behaved solutions (the orbitals) are products of 3
functions, each depending on only r, © or ¢ and each orbital is
characterized by 3 integer quantum numbers, n, 1, and m, (3 because

space is 3-dimensional).
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The
each has powers of cos ® in it. The product of the two angular parts
is the same for every spherical problem, not just for quantum mechanics

of atoms. Thus it's given a special name and symbol.
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The RI%) describes the Radial Motion (in and out). The Lm.iare the famous

associated Laguerre Polynomials. All these equations and solutions were

known and solved by mathematicians in the 1800's or earlier. This should



serve to make the distinction between theory and mathematics. The same
math appears in many different theories. What Schroedinger did was
discover how to map physical reality onto existing mathematics.

We will note at this‘'point only that / » the measure of angular
momentum affects the radial function because of the “centrifugal force"
as discussed above. ( Wandoot # &)

2. \ The a? E‘quation}

Its fairly easy to show that _D: @ = -4
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and that @ =7\/€

m= 0, i-l' i2, essoccoe

Integer values come from requirement that @ () = dS('(p,.,_ﬂ)

The significance is found from noting that
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due to motion around the z axis, i.e., that in xy plane.
Examine the Schroedinger Equation and note that

Ly = 4T

dP*
L= —h T

Note the parallel to linear momentum.

Thus 0‘(% CX>M = wh &M

and qu are eigenfunctions of f . with eigenvalues nt -
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gives the total kinetic energy about z axis.

Relation of mand £
2
P4 /‘é,&-/) 7‘,1’2" — total square of angular momentum = L

where 12 = x? + Ly2 + Lz2
Suppose ,Q =1 (a p orbital)
2=11+D % 2=2 2
Now, how large can m be? Recall that m2 ‘F\ 2 jg just the z part of 1.2

so  m*ET 4 L(0e)B
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Suppose the m = 2; then Lz2 =m? . ﬁ 2 - 4 ﬁ This could not be

since we have the ridiculous result that the part is twice as big as the
whole! In fact, since ( £ +1)2> L ( ﬁ + 1), obviously m is

required to range only from - (¢ to + j .

Thus if ¢ =0 m=0 1 type of s orbital
J =1 m=-1, 0, +1 3 types of p orbitals
f =2 m = -2,-1,0,1,2 5 types of d orbitals
J =3 m = -3,~2,-1,0,1,2,3 7 types of £ orbitals
etc.
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i.e. the + and - mean angular momentum is m‘K in clockwise or counter

clockwise direction about z. But, as you proved in the last homework,

g

this requires complex functions [ . What happened to

good old Px and Py? In molecules its more convenient to use real

orbitals, which are simply linear combinations of these. Thus,
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In general, for a given / the real d;jw\

functions are: cosd , c0s 2  seieisecnnes
14
sind , sin 2¢ G e b s d b e
up to cos 0 § cos m
r ilee. )\j\'\. =
sin ¢ § sin m @

@__ Nodes: show to your satisfaction that the real @M functions have

m planar nodes which are ,L to x, y plane (contain the z axis).
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-er- equation (1.13) for an electron
sut in the following simple form

¥ =EY. (3.22)

and 'the orbital energies are, in
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behaviour of the wave function in one figure. As it is beyond our ability
to show such a thing on our two dimensional page we restrict ourselves to
showing figures which represent the variation of the wave function with
either the radial coordinate, keeping 9 and ¢ fixed, or with 9 and ¢ keeping
r fixed.

TasLe 3.3. Normalized atomic-orbital wave functions for one-electron
atoms, (p = 2Zr/nao) all to be muitiplied by (Z/a0)¥/2(m=1/%)

n I im| Wave function
1 00 1s=ep/2
200 25 = (32)~12(2 — p) e7P/2
210 2ps = cos g
2pz = »(32)"12pe=p/2 £ 5in v} cos @
211 2py = sin 9 sin @
300 3s = (972)~V26 — 6p + p*) e?/%
10 Ips = cos &
11 3pz = p(648)1/%4p — p?) e~#/2 < sin ¥ cos @
3py = sin & sin @
20 3dp = V(3 cos? # —1)
321 Iddes = sin 28 cos @
3dye = (2592)"14p2 e-pi? 4 sin 259' sin @
Idsr-yn = sin®} cos 2
32 g { 3d:, = ) sin®d sin 2

We start first with the Is orbital. This is spherically symmetric and
decreases exponentially with distance from the nucleus. A graph of ¥y, asa
function of r is shown in figure 3.2. The probability density for an electron
in this orbital is ¥,,2. The probability of finding an electron at a distance
r from the nucleus is obtained by multiplying the probability density by
the area of the spherical shell of radius r; this function, 4nr2¥, 2, and
¥,2 are also shown in figure 3.2. :

The 1s orbital has no variation with the polar angles. We could there-
fore represent it by contour surfaces, which would be concentric spheres,
or by contours on a plane passing through the nucleus which will be
concentric circles as in figure 3.3a. We can also draw a spherical boundary
surface such that nearly all the electron density (say 90%,) is found inside
the surface: in a plane this is figure 3.3b.
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