Experiment 3. Fluorescence Spectroscopy
I Introduction to steady state spectra

Prelab Lecture 30jan19
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WHAT IS FLUORESCENCE?

ALL light comes from fluorescence, e.g., the sun, ,
fire, cell phone screens, some chemical reactions, etc.

Fluorescence usually refers to a form of

spontaneous emission in the Visible or UV wavelengths

coming promptly from an electronically excited state (decay time
ps to us i.e., 10-12to 10°5).

The most-used fluorescence probes have nanosecond decay
times.

Spontaneous emission happens whenever a system is in an
excited state. WHY?

ANSWER: caused by strong fluctuations in the zero-point
electromagnetic field, present even in dark vacuum!



Electromagnetic radiation is emitted by all objects not at 0 Kelvin.
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Where N2 and Temperature dependence is from
O2 start to the Boltzmann ratio for probability
absorb to be in an excited state:

Nexcited/Nground:eXp(AE/kBT) )
where AE= hv = hc/A



IR fluorescence from the atmosphere.

Evidence: looking skyward with an IR spectrometer:
Spectrum of greenhouse radiation
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Why is CO, so strong compared to water??

There is much more water in air.
2J (Evans 2006).



http://ams.confex.com/ams/Annual2006/techprogram/paper_100737.htm

Fluorescence of EARTH at different temperatures seen from space.
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ABSORPTION & FLUORESCENCE

Vibrational relaxation:~1 ps

S, e Jablonski

(2™ excited state) ‘T 1
1 \ﬁt_e;nal conversion:~1 ps Dlagram
3,

(1%t excited state)

Fluorescence lifetime ~5 ns

+«—Abs—
(exponential decay)

-Il'--—-—‘---*%

‘-—n he . e
=LY R —————

S

(ground state)

} Vibrational levels

5 Kasha’s Rule:
Fud ¥ Fluorescence is 99.9%
v from S, independent of
', excitation wavelength;
w~mirror image of S, abs.

Wavelength —»



Beer-Lambert Law
photon + M ---> M* (electronically excited)

d[pt‘j‘ito”] — _K[M][photon] = —k [M] |

[photon] = light intensity = |

% = —K[M]I, where k[M] is a pseudo first - order rate constant

for the disappearance of photons Intensity of beam
KM falls off exponentially

f _ L _ e—k[M]t _ e-k[M]X/C _ 10 2.303c _ 10—8[M]X _ 1O—A

I
0
In this context f = fraction of photons remaining after travelling distance x
l.e., f= Transmittance =T = 10X = 104

104 isjusttelling youthat A=ecx= —log T



Attenuation of the Excitation Light through Absorbance

Sample concentration
& the inner filter effect

Guess the Absorbance

Rhodamine B

David Jameson http://www.fluorescence-foundation.org/2007Lectures/Lecture12007.pdf
from Jameson et. al., Methods in Enzymology (2002}, 360:1



Absorbance

https://en.wikipedia.org/wiki/Fluorescein
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file://1J:/1374-14/Fluorescence-l/Application%20Notes%20-%20HORIBA.htm

Fluorescence from single molecucles under a microscope

http://www.youtube.com/watch?v=CDald68tTz0
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http://www.youtube.com/watch?v=CDald68tTz0

Fig. 13.34 Tinoco et al.
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How do we measure fluorescence
and scattering?



FluoroMax"-4 & FluoroMax® 4P with USB rev. D (30 Jul 201 2) System Description
Optical layout

Horiba
Fluorimeter

1 Xenon arc-lamp and lamp housing

la Xenon-lamp power supply

Ib Xenon flash lamp (FluoroMax®-4P only)

2 Excitation monochromator

2a&2b  Slits

3 Sample compartment

4 Emission monochromator

4a &4b  Slits

5 Signal detector (photomultiplier tube and housing)

6 Reference detector (photodiode and current-acquisition module)
Host computer (not on diagram)

llluminator (xenon arc-lamp, 1)

The continuous light source is a 150-W ozone-
free xenon arc-lamp. Light from the lamp is col-
lected by a diamond-turned elliptical mirror, and
then focused on the entrance slit of the excitation
monochromator. The lamp housing is separated
from the excitation monochromator by a quartz
window. This vents heat out of the instrument,
and protects against the unlikely occurrence of
lamp failure.
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Absorbance

https://en.wikipedia.org/wiki/Fluorescein
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ABSORPTION & FLUORESCENCE

Vibrational relaxation:~1 ps
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Fluorescence Quantum Yield

4.2.3 Fluorescence Quenching by lodide

1. Calculate he quantum yield for each concentration of the iodide, [Q], using numbers
from the Theory document and :

k.
Quantum Yield= @ rad

;T L -
k" T kic T kz’sc T kq[Q]

rad

Fluorescence Lifetime = 1/(sum of rate constants)
= 1/(krad +kic t kisc t kq[Q] ) = Tf
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What is fluorescence lifetime?
d[excited molecules]/dt = -k [excited molecules]
d(Intensity)/dt = -k (Intensity) 1St order reaction
Solution to this differential equation?

Fluor. intensity at time t = (Fluor. Intensity at time 0) x ekt

or = (Fluor. Intensity at time 0 x) et

T = “lifetime” = 1/k

Tt = Inverse of 1st order rate constant

20



“*Quenching’



und State

Highest Occupied Molecular
Orbital



ﬂf'/\ Excited State (fluorescing state)

Lowest Unoccupied Molecular
Orbital (electron excited)



Quenching by iodide ion

(has higher HOMO)
will quench fluorescence



Electron transfer from I to indole makes a
radical pair that cannot fluoresce.
(would violate Pauli exclusion)
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ﬁr’\ Radical Pair (can’t fluoresce)

Electron transferred from iodide
to vacancy in HOMO of ring
l.e., OUENCHING
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