Experiment 3: Fluorescence Spectroscopy I: Introduction to steady state spectra

Prelab Lecture 30jan19 P. Callis

WHAT IS FLUORESCENCE?

ALL light comes from fluorescence, e.g., the sun, light bulbs, fire, cell phone screens, some chemical reactions, etc.

Fluorescence *usually* refers to a form of spontaneous emission in the Visible or UV wavelengths coming promptly from an electronically excited state (decay time ps to μs i.e., 10⁻¹² to 10⁻⁶ s).
The most-used fluorescence probes have nanosecond decay times.

Spontaneous emission happens whenever a system is in an excited state. **WHY**?

ANSWER: caused by strong fluctuations in the zero-point electromagnetic field, present even in dark vacuum!

Electromagnetic radiation is emitted by <u>all</u>objects not at 0 Kelvin.

IR fluorescence from the atmosphere.

Evidence: looking skyward with an IR spectrometer: Spectrum of greenhouse radiation

(Evans 2006).

2 J

Fluorescence of EARTH at different temperatures seen from space.

Beer-Lambert Law

photon + M ---> M* (electronically excited)

$$\frac{d[photon]}{dt} = -k[M][photon] = -k[M]I$$

[photon] = light intensity = I

 $\frac{dI}{dt} = -k[M]I$, where k[M] is a pseudo first - order rate constant

for the disappearance of photons

Intensity of beam falls off exponentially

$$f = \frac{I}{I_0} = e^{-k[M]t} = e^{-k[M]x/c} = 10^{\frac{-k[M]x}{2.303c}} = 10^{-\epsilon[M]x} = 10^{-A}$$

In this context f = fraction of photons remaining after travelling distance x i.e., f= Transmittance = T = $10^{-\epsilon cx} = 10^{-A}$

10^{-A} is just telling you that $A = \varepsilon cx = -\log T$

Attenuation of the Excitation Light through Absorbance

Sample concentration & the inner filter effect

Guess the Absorbance

David Jameson http://www.fluorescence-foundation.org/2007Lectures/Lecture12007.pdf from Jameson et. al., Methods in Enzymology (2002), 360:1

https://en.wikipedia.org/wiki/Fluorescein

Fluorescein

file:///J:/<u>374-14/Fluorescence-I/Application%20Notes%20-</u>%20HORIBA.htm

Fluorescence from <u>single molecucles</u> under a microscope

http://www.youtube.com/watch?v=CDald68tTz0

How do we measure fluorescence and scattering?

Horiba Fluorimeter

- 1 Xenon arc-lamp and lamp housing
- la Xenon-lamp power supply
- 1b Xenon flash lamp (FluoroMax[®]-4P only)
- 2 Excitation monochromator
- 2a & 2b Slits
- 3 Sample compartment
- 4 Emission monochromator
- 4a & 4b Slits
- 5 Signal detector (photomultiplier tube and housing)
- 6 Reference detector (photodiode and current-acquisition module) Host computer (not on diagram)

Illuminator (xenon arc-lamp, 1)

The continuous light source is a 150-W ozonefree xenon arc-lamp. Light from the lamp is collected by a diamond-turned elliptical mirror, and then focused on the entrance slit of the excitation monochromator. The lamp housing is separated from the excitation monochromator by a quartz window. This vents heat out of the instrument, and protects against the unlikely occurrence of lamp failure.

Emission Monochromator

https://en.wikipedia.org/wiki/Fluorescein

Fluorescence Quantum Yield

4.2.3 Fluorescence Quenching by Iodide

1. Calculate he quantum yield for each concentration of the iodide, [Q], using numbers from the Theory document and :

Quantum Yield =
$$\Phi_f = \frac{k_{rad}}{k_{rad} + k_{ic} + k_{isc} + k_q[Q]}$$

Fluorescence Lifetime = 1/(sum of rate constants)

 $= 1/(k_{rad} + k_{ic} + k_{isc} + k_q[Q]) = \tau_f$

What is fluorescence lifetime?

d[excited molecules]/dt = -k [excited molecules]
d(Intensity)/dt = -k (Intensity) 1st order reaction
Solution to this differential equation?

Fluor. intensity at time t = (Fluor. Intensity at time 0) x e^{-kt}

or = (Fluor. Intensity at time 0 x) $e^{-t/\tau}$

τ = "lifetime" = 1/k

 τ = inverse of 1st order rate constant

"Quenching"

Highest Occupied Molecular Orbital

Lowest Unoccupied Molecular Orbital (electron excited)

Quenching by iodide ion

Electron transfer from I⁻ to indole makes a radical pair that cannot fluoresce. (would violate Pauli exclusion)

Ring

lodine

Electron transferred from iodide to vacancy in HOMO of ring i.e., <u>QUENCHING</u>