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Statistical Thermodynamics: Sublimation of Solid Iodine  

 

Chem 374 

For March 14, 2019 

Prof. Patrik Callis 

  

Purpose:   

1.  To review basic fundamentals ideas of Statistical Mechanics as applied to a pure solid and 

pure diatomic gas.  Apply common equations for translational, rotational, and vibrational 

partition functions to compute the equilibrium constant, Keq , for I2(s) ---> I2(g), i.e., the 

“vapor pressure”, and  H0, both as a function of temperature. 

2. Compute Keq using a partially completed excel spreadsheet which should be downloaded 

from the website.   

3.  Compare the calculations with what you measured earlier in the semester. 

 

Introduction: 

Here we give some notes to clarify the several pages of Statistical-Mechanical background and 

application to the vapor pressure of I2 solid reproduced below from a textbook. 

a. chemical potential  

The Van’t Hoff Equation tells how G0 and  0 change with temperature, therefore how Keq 

changes with temperature.   This includes the “equilibrium constants” for phase changes. 

0 is called the chemical potential.  At constant T and P, it is defined as:  
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But our experiment is done at constant T and V, so there is no non-pV work to worry about.  It 

is energy instead of enthalpy that we are concerned with. The Helmholz free energy, A, is what 

determines equilibrium constant, useful work, and spontaneity at constant volume. 
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A = U – TS by definition, where U in this document is energy.  In terms of A, the chemical 

potential becomes: 

 1component for energy  free Helmholtzmolar  partial  theis    where 1
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This is the chemical potential when V is constant.   

Partial molar quantities are necessary to talk about properties of mixtures in which the 

composition changes. We used a mixture of 2 substances for illustration, but the same equations 

apply to any number of components.  

For a pure substance, like pure I2   = molar G with units of J/mol at constant temperature and 

pressure.   = molar A at constant temperature and volume. 

When 2 or more phases are in equilibrium, the chemical potential is the same in each phase for 

every component.  This is another way of saying the obvious:  G = 0 for transferring any 

component between any two phases at constant T and P. 

No matter what the conditions, when 2 or more phases are in equilibrium, the chemical potential 

is the same in each phase for every component.  A = 0 for transferring any component between 

any two phases at constant T and V. 

By the way, the Van’t Hoff Equation for the constant V case is: 

 

This means that in the vapor pressure experiment, the plot of lnP vs 1/T has a slope of  

-U0/R, not -H0/R.   It is easy to show that H0 = U0 + RT from the definition  

H = U + PV. 
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b. Statistical Thermodynamics  

Statistical mechanics was invented by Boltzmann.  It is conceptually quite simple, but is 

unfortunately presented in textbooks in such a way as to appear frightening and impossible to 

learn. 

You already know the basic idea:  G0= -RTlnK or the equivalent statement:
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This means if A = -57000 J, Keq= 1 x 1010 ;   if A = +57000 J, Keq= 1 x 10-10 

The above expression for K is the well-known Boltzmann distribution, which we have been 

constantly applying this semester in lecture and lab.  This is best memorized as the simple ratio 

of probabilities to be in energy levels 1 and 2 at equilibrium: 

K2/1  = 
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    ,  where N1 and N1  are the numbers 

of molecules in states 1 and 2, and g1 and g2 are the degeneracies of the states 1 and 2.  g1 is the 

number of different states with energy = U1.   

The degeneracy is what Boltzmann called the number of available states in his remarkable 

molecular statement of entropy: S = kBln(g). (usually written as S = kBlnW).  

Boltzmann’s constant kB = 1.38x 10-23  J K-1 molecule-1.  When multiplied by Avogadro’s 

Number, Boltzmann’s constant becomes R = 8.3145 J K-1 mol-1.  (Thus when one sees the 

expression exp(-U/kBT), you immediately know that the units of U are J/molecule, instead of 

J/mol) 

Therefore S = S2 – S1= Rln (g2) - Rln (g1) = Rln(g2/ g1).   
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c. Partition functions 

At the outset, let’s be clear that this terrible thing (partition function) as used here is nothing 

more than the number of available states in a constant temperature system.   

,

Ui
kT

states i

Q e


  , a weighted sum of states weighted by Boltzmann factors, which is what is 

meant by available.  As the state energy increases, it is less available at a given temperature. 

(The most evident display of this is atmospheric pressure as a function of altitude!) 

 

Now, if we sum over Ui levels , multiplying each Boltzmann factor by the degeneracy of the 

energy level, we get the equivalent statement:  
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or 
kT

A
Q ln  , or QkTA ln  

This is coincidently closely related to the Q in  G = G0 +RTlnQ. 

d. molecular partition functions 

In the gaseous state, a molecule’s translational, rotational, vibrational, and electronic degrees of 

freedom behave independently.  The total number of available states, qg, is just the product of the 

individual partition functions for the various degrees of freedom: qg= qtrans qrot qvib qel . 

Each of these is the sum over all quantum states, each weighted by its degeneracy and 

Boltzmann factor.  These are well approximated by simple integrals for translational and 

rotational, because the energy levels are quite close together. For vibrational and electronic we 

must sum.  Vibrations are assumed to be harmonic oscillators, for which the sum of Boltzmann 

factors is a simple power series that can easily be shown to be 
1)1( 
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h
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.  Because 

in most molecules all electronic excited states are so high above the ground state, qelectronic= 1. 

This is true for I2 because the ground state of I2 is non-degenerate.   

 

e. Vapor Pressure = Keq = exp(-A0/RT)  

Finally, instead of equation (34), which has been made completely baffling by “simplifying” it to 

death, you will use A= Agas -Asolid = -RTlnQgas + RTQsolid) + U0
0(sub) and vary the 

concentration (which appears in qtrans disguised as the volume, V = nRT/pI2) in the spreadsheet, 

until you find the I2 pressure that makes A = 0.  That will be equilibrium, and that p will be 

the “vapor pressure” 



Page 5 of 14 
 

)ln(])1()ln[( 12/32

0
2 solidhcB

kT
p

kT

h

mkT qRTeRTA kT
vibh

 
 




, 

where qsolid is given in equations 32 and 33, and on the spreadsheet. 

------------------------------------------- 

A few more helpful details will be mentioned during our lab meeting, during which we will work 

on setting up your spread sheet. 

The spreadsheet is complete except for the formulas for the gas partition functions, which have 

all been set =1.  You should make a start on filling in these formulas before coming to class if 

possible.   

The table of experimental values is from a previous year.  You are to enter the data you took 

this year in place of that data.   
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Below is from:  Experiments in Physical Chemistry, 5th Ed., D.P. Shoemaker, C.W. Garland, and 

J. W. Nibler, 1998 
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