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Statistical Thermodynamics: Sublimation of Solid lodine

Chem 374
For March 14, 2019
Prof. Patrik Callis

Purpose:

1. To review basic fundamentals ideas of Statistical Mechanics as applied to a pure solid and
pure diatomic gas. Apply common equations for translational, rotational, and vibrational
partition functions to compute the equilibrium constant, Keq , for I2(s) ---> 12(g), i.e., the
“vapor pressure”, and AH?, both as a function of temperature.

2. Compute Keq using a partially completed excel spreadsheet which should be downloaded
from the website.

3. Compare the calculations with what you measured earlier in the semester.

Introduction:

Here we give some notes to clarify the several pages of Statistical-Mechanical background and
application to the vapor pressure of I> solid reproduced below from a textbook.

a. chemical potential

The Van’t Hoff Equation tells how AG® and Ap° change with temperature, therefore how Keq
changes with temperature. This includes the “equilibrium constants” for phase changes.

1O is called the chemical potential. At constant T and P, it is defined as:

de:(@j dT +(§j dp+(@J dnl+(§j dn,
oT P.n.n, opP T.n,n, anl T.P.n, anz T.P.ny

dG = —-SdT + V dP + dn + wdn,

1

where u, = (ﬁj = G, is the partial molar Gibbs free energy,
T,P.n,

but is most commonly called the* chemical potential*'of component 1.

But our experiment is done at constant T and V, so there is no non-pV work to worry about. It
is energy instead of enthalpy that we are concerned with. The Helmholz free energy, A, is what
determines equilibrium constant, useful work, and spontaneity at constant volume.
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A = U — TS by definition, where U in this document is energy. In terms of A, the chemical
potential becomes:

dA= (%) dT +(%) dv + o6 dn, + L dn,
al Vi, n, N T.m,n, anl TV.n, anz TV.m

dA= —-SdT - Pav +  dn +  w,dn,

where g, = (%J = A is the partial molar Helmholtz free energy for component1
1/TV.n,

This is the chemical potential when V is constant.

Partial molar quantities are necessary to talk about properties of mixtures in which the
composition changes. We used a mixture of 2 substances for illustration, but the same equations
apply to any number of components.

For a pure substance, like pure I A = molar AG with units of J/mol at constant temperature and
pressure. Au = molar AA at constant temperature and volume.

When 2 or more phases are in equilibrium, the chemical potential is the same in each phase for
every component. This is another way of saying the obvious: AG = 0 for transferring any
component between any two phases at constant T and P.

No matter what the conditions, when 2 or more phases are in equilibrium, the chemical potential
is the same in each phase for every component. AA = 0 for transferring any component between
any two phases at constant T and V.

By the way, the Van’t Hoff Equation for the constant V case is:

—RTInK =AA° = AU —TAS?

AO 70 c 0
Divide by -RT: InK =28 _ AU~ AS
RT  RT = R

Subtract for two different values of T, assuming constant AH® and AS°®
In KT | __AU°(1 1
K(T) R AT, T

This means that in the vapor pressure experiment, the plot of InP vs 1/T has a slope of

-AU%R, not -AH%R. It is easy to show that AH? = AU® + RT from the definition
H=U+PV.
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b. Statistical Thermodynamics

Statistical mechanics was invented by Boltzmann. It is conceptually quite simple, but is
unfortunately presented in textbooks in such a way as to appear frightening and impossible to
learn.

You already know the basic idea: AG=-RTInK or the equivalent statement:
0 0 0

—AG -AG —-AG
K=e*® =10%% =105 4 constant T=298 K and P.

a0 _aA0
At constant T and V, this becomes K =€ 7 =102%*" =10

Ap0
5709 ot constant T =298.

This means if AA = -57000 J, Keg= 1 x 101%; if AA = +57000 J, Keg= 1 x 10710

The above expression for K is the well-known Boltzmann distribution, which we have been
constantly applying this semester in lecture and lab. This is best memorized as the simple ratio
of probabilities to be in energy levels 1 and 2 at equilibrium:

P N -au® —and —an®
2 __ 2 — gz g R :102.3RT _105700

- , where N1 and N1 are the numbers
P N g

Ko =
of molecules in states 1 and 2, and g1 and g are the degeneracies of the states 1 and 2. g is the
number of different states with energy = Ux.

The degeneracy is what Boltzmann called the number of available states in his remarkable
molecular statement of entropy: S = keIn(g). (usually written as S = ksInW).

Boltzmann’s constant kg = 1.38x 102 J Kt molecule. When multiplied by Avogadro’s
Number, Boltzmann’s constant becomes R = 8.3145 J KX mol™. (Thus when one sees the
expression exp(-AU/ksT), you immediately know that the units of U are J/molecule, instead of
J/mol)

Therefore AS = S — S1= RIn (g2) - RIn (g1) = RIn(g2/ 91).

*p) &
And, g~ er giving:

-Au® as?  —au® -AU9  1asO -AU9  1ASO -(au%-Tas?)

a0

K :&em’:eReRT:eRTeRT —@ R @R —p@ RT —@ R

€q

0;
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c. Partition functions

At the outset, let’s be clear that this terrible thing (partition function) as used here is nothing
more than the number of available states in a constant temperature system.

Ui
_ W
Q _ Z ) € , a weighted sum of states weighted by Boltzmann factors, which is what is
states,i

meant by available. As the state energy increases, it is less available at a given temperature.

(The most evident display of this is atmospheric pressure as a function of altitude!)

Now, if we sum over Ui levels , multiplying each Boltzmann factor by the degeneracy of the
energy level, we get the equivalent statement:

TSi  -Uj

Q=Y ge"= Y e'e” = Y e =e¥

levels,i levels,i levels,i
or InQ——A or A=—-kTInQ
kT a

This is coincidently closely related to the Q in AG = AG? +RTInQ.

d. molecular partition functions

In the gaseous state, a molecule’s translational, rotational, vibrational, and electronic degrees of
freedom behave independently. The total number of available states, qg, is just the product of the
individual partition functions for the various degrees of freedom: g= Qtrans Jrot Qvib Cel -

Each of these is the sum over all quantum states, each weighted by its degeneracy and
Boltzmann factor. These are well approximated by simple integrals for translational and
rotational, because the energy levels are quite close together. For vibrational and electronic we
must sum. Vibrations are assumed to be harmonic oscillators, for which the sum of Boltzmann

-1
factors is a simple power series that can easily be shown to be Oy = (1_ e ) . Because

in most molecules all electronic excited states are so high above the ground state, Qelectronic= 1.
This is true for 12 because the ground state of |2 is non-degenerate.

e. Vapor Pressure = Kegq = exp(-AA%YRT)

Finally, instead of equation (34), which has been made completely baffling by “simplifying” it to
death, you will use AA= Agas -Asolid = -RTINQgas + RTQsoiid) + AU%(sub) and vary the
concentration (which appears in Qans disguised as the volume, V = nRT/p12) in the spreadsheet,
until you find the 12 pressure that makes AA = 0. That will be equilibrium, and that p will be
the “vapor pressure”
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—hwip

AA = —RT In[(27zka 3/2 kT o O#IBO ><(l g W ) ]+ RT |n(q50“d)

p

where Qsiid IS given in equations 32 and 33, and on the spreadsheet.

A few more helpful details will be mentioned during our lab meeting, during which we will work
on setting up your spread sheet.

The spreadsheet is complete except for the formulas for the gas partition functions, which have
all been set =1. You should make a start on filling in these formulas before coming to class if

possible.

The table of experimental values is from a previous year. You are to enter the data you took
this year in place of that data.
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Below is from: Experiments in Physical Chemistry, 5" Ed., D.P. Shoemaker, C.W. Garland, and
J. W. Nibler, 1998

EXPERIMENT 48
STATISTICAL THERMODYNAMICS OF
IODINE SUBLIMATION

This experiment is in some respects similar to two other experiments
concerning enthalpy changes attending phase transformations, namely Exps.
13 and 47. However, it differs from them in that the experimental data, which
are vapor pressures of solid iodine at several temperatures. are obtained from
optical absorption measurements. As in the other experiments mentioned, the
enthalpy change (here the heat of sublimation of solid iodine) can be
calculated with the Clausius-Clapeyron equation, which requires the values of
vapor pressures at two or more temperatures.

The system 1,(s)-1I,(g) also provides an opportunity for the application of
statistical mechanics to derive thermodynamic information from spectroscopic
data. For the gas phase, the vibrational frequency of the 1, molecule, needed
mn formulating the vibrational partition function, can be obtained from the
absorption spectrum in the visible region (see Exp. 42); the rotational partition
function in the gas phase will be calculated from the known internuclear
distance in the iodine molecule. For the crystalline phase. published phonon
dispersion curves, obtained by inelastic neutron scattering spectroscopy, will
be used to determine the vibrational frequencies. With the above information
and statistical mechanical theory, the molar energy difference ALY between the
vibrational ground states of crystalline and gaseous iodine can be determined
from a measurement of vapor pressure at one temperature. From the fully
defined partition functions for both crystalline and gaseous iodine, the entropy
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584 XIV. soups

partition functions of the individual oscillators:
O =[lg; W@, =Yg

Since many of these oscillators differ from each other in the values of tl;
frequencies, energy levels, and partition functions, it is convenient to defir
new quantity g; which is the geometric mean of all of the ¢, for the crystal;

M 1/t 1 M
qu[H q;] lan-EﬂZlnq,-
i i=1

ey

where M is the number of oscillators. Then, for the crystal,
mnQ,=MIng,=3Ning,

where ¢ is the number of atoms in a molecule. Since In qs can be shown td_b
independent of N, we find from Eq. (35) -

s = —3tRT In g, (10

For a one-component ideal gas, the microcanonical partition function fo;
an individual molecule is g,. Therefore, under all ordinary conditions, we ma
write for a gas '

N -
=9

where the division by N! takes into account the fact that the individual
molecules are indistinguishable. With the aid of the Sterling approximation for
In(N!) we obtain

InQ,=Nlng,~NInN+N (12)

Using Eq. (5) again, we obtain
q
p, =—RT In ; (13)

We will now develop expressions for the microcanonical partition functions g
and g, to substitute into Egs. (10) and (13).

Gaseous I,. The partition function g, is very well approximated as a product
of terms arising from translational, rotational, vibrational, and electronic
degrees of freedom;

qg = QtranSQroLQVierl (14)
The translational partition function is given hy?
2amk T\

Herans = ( hz T) V (15)
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EXP. 48, STATISTICAL THERMODYNAMICS OF IODINE SUBLIMATION 585

where m is the molecular mass, k is the Boltzmann constant, T is the absolute
temperature, /4 is Planck’s constant, and V is the volume within which the
molecule is constrained to move.

For a molecule as massive as I,, the rotational encrgy levels are very
closely spaced and the partition function has the simple form’

kT T
= ke, ooy 16)

Here o is the symmetry number of the molecule, ¢ is the velocity of light, and
By is the rotational constant (conventionally expressed in units of cm™! with ¢
expressed in cms™! units) defined by

~ h
0= 872lc (17)

where ! is the moment of intertia of the moiecuie

I= puri (18)
The reduced mass u (not to be confused with chemical potential} is defined by

_ mym,
my -,

(19)

where m1y and m., are the respective atomic masses, In I, the interatomic
distance 7, is 0.2667 nm, and the rotational constant B, is (.037315 cm 1 * The
quantity O, is the rotational characteristic femperature, given by

heB,
Grot = k .

The factor he/k has the value 1.43877 cmK. Since the I, molecule is
end-for-end symmetric, g = 2,

For the vibrational partition function the molecule 1s regarded as g
quantum-mechanical harmonic oscillator, for which®

q — (1 _ e~hvty’kT)—1 — (1 _efevibfT)—l (21)

where v, is the molecular vibration frequency and O, is the vibrational
- characteristic temperature,

(20)

hVO hcﬂr’g
Gvib ==

k k

For the I, molecule, ¥, has the value 213 3 em™ 4
Equation (21) as written applies to an oscillator for which the reference
energy is the energy of the vibrational ground state (v=0);ic., the v =0 state
Ma gas molecule has been assigned zero cnergy. For the present situation, in
Which 1, molecules in the vapor phase are in equilibrium with crystalline
lodine, it is more convenient to take the reference €ncrgy to be that of an I,

(22)
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586 XIV. sOLIDS

molecule in the crystal when the crystal is in its ground vibrational state.f
Accordingly, the energy of the vibrational ground state of an I, molecule in the
ideal gas phase is taken to be Ag,, which is the energy required to remove a
molecule from the crystal at absolute zero temperature. Thus, we should write
for the I, molecule in the gas phase

Gun = (1= €~Ow/T) ™1 =8kt (23)

It remains to deal with g.. The excited electronic states of I, are
separated from the ground electronic state by an energy difference that s very
large compared to k7. Therefore

e = 1 (24)

Let us now introduce AEJ= N, Ag,, the energy needed to sublime 1 mol
of crystalline I, into the ideal gas phase at the absolute zero, and replace V by
its ideal-gas equivalent NkT'/p. We can then combine Egs. (13) to (16), (23),
and (24) to obtain

2amk 3’2{{{' T
h? P 00,

T =AES—RTln[< (1—e-9‘-ib’T)—‘] (25)

Crystalline 1,. The partition function for the crystalline state of I, consists
solely of a vibrational part; the crystal does not undergo any significant
translation or rotation, and the electronic partition function is unity for the
crystal as it is for the gas.

The geometric mean partition function for the crystal can be expressed as

o=[[la-eom]” 26)

where ©, is defined in terms of ¥, in the same way as ©;, is defined in terms of
¥, in Eq. (22). Since the number of iodine atoms is 2N for a crystal containing
N molecules of I, and since each atom contributes three degrees of freedom,
the number of modes of vibration for the crystal is

M=3XtXN-6=6N-6=6N 27

The subtracted number 6 represents the 3 translational and 3 rotational
degrees of freedom of the crystal as a whole and will henceforth be ignored.
We now present a brief discussion of the vibrations occurring in 2
crystal.”” The crystal can be thought of as a gigantic molecule with a huge
number of normal modes, and the student may find it useful to review the
discussion of normal modes for small molecules given in Exps. 36, 37, and 39.
In the case of the 1, crystal, each primitive (smallest) unit cell contains two

1t should be noted that the location of the energy zero is arbitrary; a different, but equally
reasonable, choice is made in Exp. 47. All that matters is a consistent choice for the two phases I
equilibrinm—here gaseous and crystalline I
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EXP. 48. STATISTICAL THERMODYNAMICS OF IGDINE SUBLIMATION 587

FIGURE 1

The crystal structure of I,(s).®
The primitive unit cell, outlined
in heavy lines, contains two mol-
ccules, identified by dots at the
atomic centers (one half molecule
each at the upper left and Jower
right corners, and one molecule
in the body center). The light
lines outline an orthorhombic
non-primijtive unit cell of dimen-
sions a,="0.727 nm, bo=
0,479 nm, ¢, = 0.979 nm. All mol-
ecules are in planes parallel to
the b and ¢ axes. (Not all mole- »
cules in the orthorhombic ccll are
shown.) .

molecules.® Figure 1 shows that these two molecules are distinguished easily
because their spatial orientations are different. As a consequence of this crystal
structure, there are 3 X 4 atoms = 12 mechanical degrees of freedom associated
with each unit cell. In the gas phase, there would be three translations, two
rotations, and one vibration for each of the two I, molecules. In the crystal,
however, only vibrations occur: six lattice modes, four librationai modes, and
two internal vibration (bond-stretching) modes.

Let us consider first the center-of-mass motions for each of the two I,
molecules in a unit cell. These types of motion account for six degrees of
freedom and give rise to two kinds of lattice vibration. When both 1, molecules
in a given cell move in phase with cach other (say, for example, both are
displaced in the +x direction at the same time), there are three so-called
acoustic vibrations, When the two I, molecules in a given cell move out of
phase (say one is displaced in the +x direction while the other is displaced in
the —x direction), there are three optic vibrations. t

The four librations (torsional oscillations or rocking motions) arise
because the crystal-field potential prevents the I, molecule from rotating as it
would in the gas phase. There are some special crystals, called plastic crystals,
‘in which symmetrical molecules that interact weakly can still undergo hindered

Crotation in the solid phase, but 1,(s) is not one of these. The librational
motions for each I, occur about two axes (@, ) perpendicular to the I—] bond
direction. The librations of the two I, molecules in the same unit cell are
'_-'Coupled«giving rise to SL,,, AL, and SLg, ALy vibrations, where SI denotes
Symmetric libration (angle displacements in phase) and AL denotes anti-
Symumetric libration (angle displacements out of phase).

Finally, there are two 1—1I bond-stretching vibrations that are essentially
the same ag the gas-phase stretching mode. As ¢xpected, these vibrations are
——— e
T'The name opfic maode comes from the behavior of tonic crystals such as Na' CI™. When Na' and
C™ in a given cel move oul of phase with each other, there is an oscillating electric dipole.
Optical absorption will oceur for light having frequency equal to that of the optic latiice mode.,
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588 XIV. s0LIDs

coupled to produce a 8§ (symmetric stretch) in-phase vibration and ap
(antisymmetric stretch) out-of-phase vibration. In the latter case, one Lb
is stretching while the other is being compressed. As a result of interactio
the crystalline phase,”” these S§ and AS vibrations have lower frequeng
than the gas-phase vibration at 213.3cm ™",

Now we must consider the fact that the motions of the I, molecules in 3
given unit cell are coupled to those of the molecules in other unit cells, ;
entire crystal of N/2 unit cells has 12 X (N/2) = 6N degrees of frecdom. Thug
would seem necessary to solve a 6N X 6N secular determinant to obtain i
normal-mode frequencies. However, symmetry and the periodicity of t
lattice can be used to greatly simplify the problem,®’ and we can talk about
vibrational modes associated with each of N/2 discrete values of a wave vecip
k. This wave vector has a magnitude

_om

k
A

and a direction that specifies the propagation direction of a rraveling wa
(i.e., of the “crests and troughs” of the periodic displacements). The
vibrational wave motion in the crystal can be represented by traveling-wav
equations of the general form

Ax, t) = Apcos(2avit —k - r) (29
where A, is the instantaneous amplitude of a displacement of type j (j =1t
12) in the cell at point r. Equation (29) describes the twelve normal modes
associated with a given k, i.e., with a given wavelength and direction for the:
periodic displacements of molecules in different cells. All allowed k values lie -
inside a Brillouin zone (BZ)*, a region bounded by a polyhedron in reciprocal -
space that is centered around k,, k,, k, =0,0,0." As k— 0, adjacent celt
displacements approach being in phase, and A—; when k—k,,, at the
Brillouin zone boundary, A— 4., a minimum wavelength for the k direction.

The v versus k curves, called phonon dispersion curves,®” are shown in
Fig. 2 for the a axis direction in an I, crystal. These and similar dispersion
curves in other directions were obtained by Smith et al.” using the technique of
inclastic neutron scattering.’”!* The frequencies of internal stretching and
libration are not affected greatly by the coupling between unit cells; i.e., each
v; 18 roughly constant for all k values for these modes. In contrast, the
center-of-mass motion is strongly affected, especially for the acoustic branches
TA,, TA,, and LA. These lattice vibrations are three-dimensional analogs of
the one-dimensional vibrations of a violin string or the air in an organ pipe and
the two-dimensional vibrations of a drum head. In the continuum (long-wave)
limit, they represent three-dimensional vibrations in a bowl of Jello. Such

T The BZ is the locus of all points in reciprocal space that are closer to 0, 0, 0 than to any other
reciprocal lattice point; its volume is equal to that of the primitive unit cell in the reciprocal lattice.
See Exp. 46 for a discussion of the reciprocal lattice.
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EXP. 48, STATISTICAL THERMODYNAMICS OF IODINE SUBLIMATION 589
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FIGURE 2

Phonon dispersion curves for L(s) in the
a-axis direction from the center of the BZ ()
to the boundary (¥) at 77K. Adapted by
permission from Smith er af. (Ref. 9).

acoustic frequencies range from 0 at the BZ center (point I’ ) to ~1-2THz at
the BZ edge [1terahertz(1 THz) = 10" Hz = 33.3 cm~!|. The notation 74
means transverse (shear) acoustic, and .4 means longitudinal (compression—
rarefaction) acoustic.

In order to assign frequency values ¥, to each of the 12 branches, we
average the available values® over the Brillouin zone. The resulting values are
given in Table 1, where limiting values at the zone center (point T') and zone
edge (points Y, T, or Z} are also given. The choice of a single frequency for
each mode corresponds to a version of the Einstein model for a solid. " This is
quite reasonable for all branches except the three acoustic branches. For those
three modes, the Debye model' would provide a better approximation.
However, the simpler Einstein approximation for 74,, TA;, and LA is
adequate for the present purposes.

We can now formulate the desired expressions for s and ;. Using Eqgs.
(8) to (10), together with the fact that £ =2 for I, and each unit cell contains
two I, molecules, we find

2(N/2)
!

1 6V 1 1
g, =N ing = .
N9 =N Zl NN & Ing (30)
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590 XIV. SOLIDS

TABLE 1
Discrete (representative) phonon frequencies in I, crystals”
Made Representative Frequency range
no. Type of frequency
J mode v, em et Point(s) in BZ*
1 TA, 21.0 0-40.5 0T
2 TA; 26.5 0-53.1 r,r
3 LA 33.0 0-56.2 ny
4 TO, 41.0 30.7 60.0 r,Y
5 TO, 49.0 41.0-60.0 T, Y
6 AL, 51.5 41.7-61.0 Y
7 SLg 58.0 57.7-66.5 LY
8 LO 59.0 65.4-46.5 rz
9 AL, 75.4 flat r
10 SL, 87.4 flat r
1 SS 180.7 fat r
12 AS 189.5 flat r

 Estimated from Ref. 9.

¢ points T and Z are not shown in Fig. 2; they are elsewhere on the surface of the BZ. Sec
Ref. 9.

The number of discrete k values is N/2, the number of primitive unit cells i
the crystal. Each of these is assumed to yield the same set of 12 branc
frequencies v, Thus we can simplify Eq. (30) to

1 N]_Z . 12
lnqs=6-N—Ej;1nq,-=ﬁgllnq}- (3

where 12 is the number of degrees of freedom per unit cell. Finally, we obtaln§
for T,(s)
Ing,=—1 2, In(1~ e 9T (32)
1

!

et
38}

and

RT 12
iy =—6RT Ing.=—- Sin(l—e @T)
i=1

e o}

Equilibrium between crystal and gas. On substituting the expressions of Eqgs.
(25) and (33) into Eq. (2) and doing some rearranging and simplifying, w¢|
obtain ]

T2 Hlil (1 — e—@ﬁ’f‘)m} B ln[(ank)m k ] AEg

R 4) &
(1—e 97 h? o®,,1 RT (34) ]

lnpfln[

Page 13 of 14



EXP. 48, STATISTICAL THERMODYNAMICS OF IODINE SUBLIMATION 591

If the value of p is determined at one temperature, this equation can be solved
for AE{, the value of which is needed (along with ©,,, and ©,,,) to determine
the chemical potential of gaseous I,. Once 1:(T) and p,(T) are both known,

one can calculate AS,, and AHA,,. By contrast, the Clausius—Clapeyron
equation, given by

AH 1
7
in its approximate integrated form, requires at least two values of p at different
temperatures in order to obtain a value of A,
Equation (35) has obvious similarities to Eq. (34). This correspondence
can be enhanced by replacing AH,,/RT with AE,,/RT+1, which is
equivalent since A(pV)=RT is an excellent approximation under the condi-
tions of the present experiment. However, AE, is temperature dependent
and refers to the energy of sublimation at the temperature of the experiment
rather than at absolute zero. This temperature dependence is reflected in the
statistical treatment by the variation with T of the second term on the left-hand
side (LHS) of Eq. (34).
If p values have been measured at several temperatures, the LHS of Eq.
(34) can be plotted against 1/7, and the value for AE? can be determined from
the slope of a straight line fitted graphically or by least squares. In addition,
the intercept can be compared with the predicted value of the constant term on
the RHS of Eq. (34). Alternatively, it is possible to calculate a AE( value from
each p, T data point and see how well these values agree. '

In p = constant — (35)

- Entropy and enthalpy of sublimation. Since we have a system of only one
. component, the chemical potentials for I, in crystalline and gaseous forms,
.. given in Eqgs. (33) and (25) respectively, are equivalent to the molar Gibbs free
- energies G, and G, aside from an additive constant. The entropies of the two
phases can be obtained by differentiating with respect to temperature. The
expressions obtained are

--(20) -(2

"o \ar/, \eT/,

RE[T ©/T .

52 ot In(l-e O”T)] (36)

3 G, 3u
§ = (%) _ _(_ﬁ)
¢ ’)P GT P

AE] - i, 7 O./T
7 2R+R€®‘Wf7 N (37)

he heat of sublimation at temperature T is

Agsub =T ASsub = T(Sg - Ss) (38)
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