First: One variable:

Derivative \equiv \text{Slope}

\text{Average Slope} = \frac{\Delta y}{\Delta x}

\text{Exact Slope} = \frac{dy}{dx}

where \, d = \text{very small } \Delta

Calculus Review:

If \, y = Bx^n \quad (\text{where } B = \text{constant}) \quad \frac{dy}{dx} = \, ? \quad Bnx^{n-1}
Partial Derivatives (Ideal Gas Law)
(needed if a function depends on more than one variable.)

\[pV = nRT \text{ gives: } V = V(n, p, T) = \frac{nRT}{P} \]

If \(n \) and \(p \) are held constant, then \(V = B \ T \)

\[\frac{dV}{dT} = B = \frac{nR}{P} \]

Cool way:

\[\left(\frac{\partial V}{\partial T} \right)_{n,p} = \frac{nR}{P} = \text{the SLOPE of } V \text{ in the T direction} \]

The curly \(d \) is the same a the ordinary \(d \). The curliness just tells you that other variables besides \(T \) can affect \(V \), but are being held constant.

The subscripts further emphasize this by telling which variables are constant.
Similarly, if \(n \) and \(T \) are held constant

\[
V = \frac{nRT}{p}
\]

If \(n \) and \(T \) are held constant, then \(V = B' \, \frac{1}{p} \)

\[
\frac{dV}{dp} = B' \left(\frac{1}{p} \right) = nRT \, \frac{d}{dp} \left(\frac{1}{p} \right) = nRT \, \frac{dp^{-1}}{dp} = -\frac{nRT}{p^2}
\]

\[
\left(\frac{\partial V}{\partial p} \right)_{n,T} = -\frac{nR}{p^2}
\]

= the **SLOPE** of \(V \)

in the \(p \) direction

The *curly d* is the same as the ordinary \(d \). The *curliness just tells you that other variables besides \(T \) can affect \(V \), but are being held constant.

The subscripts further emphasize this by telling which variables are constant.
general change in V:

$$dV = \left(\frac{\partial V}{\partial T} \right)_{n,p} \, dT + \left(\frac{\partial V}{\partial P} \right)_{n,T} \, dP + \left(\frac{\partial V}{\partial n} \right)_{P,T} \, dn$$

If n not constant

$$dV = \text{Slope in } T \text{ direction} \times \text{Change in } T$$
$$+ \text{Slope in } P \text{ direction} \times \text{Change in } P$$
$$+ \text{Slope in } n \text{ direction} \times \text{Change in } n$$
Slopes are not independent !!!

\[dV = \text{Slope in } T \text{ direction } \times \text{Change in } T + \text{Slope in } P \text{ direction } \times \text{Change in } P + \text{Slope in } n \text{ direction } \times \text{Change in } n \]

Now, for simplicity keep \(n \) constant, so that \(V = V(P,T) \)

Two paths from 1 \(\rightarrow \) 2
Steep up \(T \), steep down \(p \), or less steep down \(p \), less steep up \(T \)

This is a way of saying the order of differentiation does not matter.
Slopes are not independent: Maxwell’s Relations

\[dV = \left(\frac{\partial V}{\partial T} \right)_P \, dT + \left(\frac{\partial V}{\partial P} \right)_T \, dP \]

\[\frac{nR}{P} \, dT - \frac{nRT}{P^2} \, dP \]

because \[V = \frac{nRT}{P} \]

Maxwell: \[\frac{\partial}{\partial P} \left(\frac{\partial V}{\partial T} \right)_P = \frac{\partial}{\partial T} \left(\frac{\partial V}{\partial P} \right)_V \]

\[= -\frac{nR}{P^2} \quad = -\frac{nR}{P^2} \]

i.e., the T slope changes with p exactly as the p slope changes with T
The **Maxwell Relations** apply to all such equations:

Applied to the Fundamental Equation:

\[
dU = TdS - pdV \text{ is also } \left(\frac{\partial U}{\partial S} \right)_V dS + \left(\frac{\partial U}{\partial V} \right)_S dV
\]

Recall this means that \(T = ? \) and \(p = ? \)

\[
\left(\frac{\partial U}{\partial S} \right)_V = T \text{ and } \left(\frac{\partial U}{\partial V} \right)_S = -p
\]

Therefore implies:

\[
\left(\frac{\partial T}{\partial V} \right)_S = -\left(\frac{\partial p}{\partial S} \right)_V
\]

Because:

\[
\frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S} \right)_V = \frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V} \right)_S
\]

The V slope of the S slope of U = The S slope of the V slope of U
Similar relationships come from definitions of H, G, and A

IF we add $d(PV)$ to both sides of the Fundamental Equation, we magically transform it into a similar equation for dH:

$$dU = TdS - PdV = dq_{\text{rev}} + dW_{\text{rev}}$$

$$dU + d(PV) = dH$$

$$dH = TdS - PdV + PdV + VdP$$

$$dH = TdS + VdP$$

Then it follows that: $$\left(\frac{\partial H}{\partial S} \right)_P = T \text{ and } \left(\frac{\partial H}{\partial P} \right)_S = V$$

and $$\left(\frac{\partial T}{\partial P} \right)_S = \left(\frac{\partial V}{\partial S} \right)_P$$

The last 3 lines show how to answer problem S4 on homework but how do we get to something useful?
Generalize
Let Z be anything that depends on X and Y, i.e., $Z = Z(X,Y)$

X, Y, and Z are any state functions whatsoever.

For example:
$Z = \text{elevation above sea level}$
$X = \text{distance heading EAST}$
$Y = \text{distance heading NORTH}$

Then it is \text{ALWAYS TRUE} that:

$$dZ = \left(\frac{\partial Z}{\partial X} \right)_Y dX + \left(\frac{\partial Z}{\partial Y} \right)_X dY$$

If changes are small, but not infinitely small, it is true that:

$$\Delta Z = \left(\frac{\Delta Z}{\Delta X} \right)_Y \Delta X + \left(\frac{\Delta Z}{\Delta Y} \right)_X \Delta Y$$
Compare:

\[dZ = \left(\frac{\partial Z}{\partial X} \right)_Y dX + \left(\frac{\partial Z}{\partial Y} \right)_X dY \]

With:

Given that \(q_{\text{rev}} + w_{\text{rev}} = dU = T \ dS - P \ dV \),

adding \(d(PV) \) to \(dU \) gives:

\[dH = T \ dS + V \ dP = \left(\frac{\partial H}{\partial S} \right)_V dS + \left(\frac{\partial H}{\partial P} \right)_S dP \]

subtract \(d(TS) \) from \(dU \) gives:

\[dA = -S \ dT - P \ dV = \left(\frac{\partial A}{\partial T} \right)_V dT + \left(\frac{\partial A}{\partial V} \right)_T dV \]

subtract \(d(TS) \) from \(dH \) gives:

\[dG = -S \ dT + V \ dP = \left(\frac{\partial G}{\partial T} \right)_P dT + \left(\frac{\partial G}{\partial P} \right)_T dP \]

Conclude that:

\[\left(\frac{\partial U}{\partial S} \right)_V = T \text{ and } \left(\frac{\partial U}{\partial V} \right)_S = -P \text{ and } \left(\frac{\partial T}{\partial V} \right)_S = -\left(\frac{\partial P}{\partial S} \right)_V \]

\[\left(\frac{\partial H}{\partial S} \right)_P = T \text{ and } \left(\frac{\partial H}{\partial P} \right)_S = V \text{ and } \left(\frac{\partial T}{\partial P} \right)_S = -\left(\frac{\partial V}{\partial S} \right)_P \]

\[\left(\frac{\partial A}{\partial T} \right)_V = -S \text{ and } \left(\frac{\partial A}{\partial V} \right)_T = -P \text{ and } \left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V \]

\[\left(\frac{\partial G}{\partial T} \right)_P = -S \text{ and } \left(\frac{\partial G}{\partial P} \right)_T = V \text{ and } -\left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial V}{\partial T} \right)_P \]

This matrix of information surprisingly leads to something of great practical value.

CAN YOU SEE IT?
First and Second Laws combined to give $U = U(S,V)$

$$dU = TdS - PdV$$ (the “Fundamental Equation”).

But we talk a lot about $U=U(T,V)$. This is more useful because we know how to change T and V and how to keep T and V constant.

$$dU = \left(\frac{\partial U}{\partial T} \right)_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV$$

already know $\left(\frac{\partial U}{\partial T} \right)_V = C_V$

What is $\left(\frac{\partial U}{\partial V} \right)_T$ for an ideal gas? 0, of course

What is $\left(\frac{\partial U}{\partial V} \right)_T$ for any material?
What is \(\left(\frac{\partial U}{\partial V} \right)_T \) for any material?

\[dU = TdS - PdV \]

Divide by \(dV \) and hold \(T \) constant

\[\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial S}{\partial V} \right)_T - P \]

But, there is no entropy meter. 😞

However, from:

\[dA = -S \, dT - P \, dV \]

\[\left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V \]

\[\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial P}{\partial T} \right)_V - P \]

Encase the material in a rigid constant \(V \) container equipped with a PRESSURE GAUGE.

Measure \(P \) as you raise the \(T \)

Good that it is all in terms of MEASUREABLE variables.

How do you experimentally determine \(\left(\frac{\partial U}{\partial V} \right)_T \)?
Does this give zero for an ideal gas?

\[
\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial P}{\partial T} \right)_V - P
\]

For ANYTHING!!

\[
P = \frac{nRT}{V}
\]

\[
\left(\frac{\partial P}{\partial T} \right)_V = \frac{nR}{V}; \quad T \left(\frac{\partial P}{\partial T} \right)_V = \frac{nRT}{V} = +P
\]

\[
T \left(\frac{\partial P}{\partial T} \right)_V - P = P - P = 0
\]
Use a Volume Meter at different temperatures

Getting how E changes with V and how H changes with P for anything

Use a Pressure Meter at different temperatures