
In words, the Fock matrix elements between AOs χµ and χν are:

1) The kinetic energy matrix elements: (in hµν )

2)The integral over nuclear attraction (also in hµν)

3) Electrostatic repulsion between  all AO products pairs (χλχσ), 
minus ½ the repulsion of the exchanged pairs weighted by Dλσ .

[ ])|()|( 2
1 νσµλλσµν

λσ
λσµνµν −+= ∑DhF

It is crucial that (except for the kinetic energy), that you translate 
and visualize the above equation as a statement of simple 
electrostatic attactions (negative) and repulsions (positive)
involving charge clouds of AOs squared on the diagonal, and 
involving charge-like clouds of AO products off the diagonal.
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Examine actual HF-SCF output from a computation for water using 
Gaussian 09.  
(pdf from Jean Standard course website, Illinois StateChemistry 460 Spring 2015 Dr. Jean M. 
Standard April 22, 2015 

A Hartree-Fock Calculation of the Water Molecule
Introduction
An example Hartree-Fock calculation of the water molecule will be 
presented.  In this case, the water molecule will have its geometry 
fixed at the experimental values of bond lengths (R(O-H)=0.95 Å) 
and bond angle (∠H-O-H= 104.5°).  
Thus, the electronic energy and wavefunction will be computed for 
fixed nuclear positions; this is known as a single-point energy 
calculation.  

A minimal basis set of atomic orbital functions will be employed. 
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Gaussian input file text file
typed by Callis and named 

jean-h2o.gjf (job input file)

All input files must have .gjf
extension. 
-------------------

%chk=C:\564-17\Jean-h20.chk
# hf/sto-3g pop=full

water from Jean Standard pdf, ordered to 
match output by callis molecule in yz plane

0 1
8  0.000000   0.000000    0.116321
1 0 .000000   0.751155    -0.465285 
1  0.000000   -0.751155    -0.465285

Location of checkpoint file; necessesary 
to plot MOs, vibrations, etc.

Route card; tells what to do
Blank line

Comments 

Blank line

Blank line

charge
2S +1 = spin multiplicity

Atomic No, Cartesian 
coords.
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O
H6H7

z

y

molecule in yz plane

8  0.000000   0.000000    0.116321
1  0.000000   0.751155   -0.465285 
1  0.000000  -0.751155   -0.465285
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Look at the .out file  or .log file
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Next get oriented with the  orbital PHASES relative to molecule orientation
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2py

+

2s

z

y

molecule in yz plane

_ 2pz+

z

y_

+ +
1s

Slater type orbitals
No radial nodes

2px has + lobe
towards viewer 
in + x direction

7 6
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The Overlap Matrix

<µ|ν> = Sµν = Sνµ
Try to understand EVERYTHING about this matrix
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Do these overlap integrals make sense?

O1s

O2sO1s
2px

2py

2pz
Ha 1s

Hb 1sHa1s

2px

Why does AO 3 = 2px have zero for all overlap integrals
why O 1s orbital has very small overlap with both H1s (6) and H1s (7)
Why 2s orbital has large + overlap with both H1s (6) and H1s (7)
why 2py has + overlap with H1s (6)  and – with H1s (7) 

why 2pz has – overlap with both H1s (6) and H1s (7)
why H1s (6) and H1s (7) have large + overlap

O2s

H6H7

z

yO
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The Kinetic Energy Matrix

Why so large?

Why  negative off diag?

Why is this negative?
Think about what part of the 1s orbital of O 
is tunneling and where the 1s and 2s overlap 
most.
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The Electron-Nuclear Attraction Matrix

Why  are the off diag elements mostly opposite sign of T matrix?
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The One-electron Matrix
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This is why one can say   “The Hamiltonian is NEGATIVE”
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The two-electron (+) contribution is smaller 
than the 1-electron contribution.
The electron repulsion is minimized:  The electrons avoid each other; 
while maximizing proximity to the nuclei.
This is also why one can say   “The Hamiltonian is NEGATIVE”
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Predict the signs of the 
Fock elements.   F

Remember F IS the 
Hamiltonian
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Most are negative, but SOME are positive;  WHY?

*

**

on  operatenot  doesˆ where

)(ˆˆ

Ψ

ΨΨ=ΨΨ>=< ∫∫
A

dAdAA ττ
A=H is always negative 
SO, + elements means
ΨΨ* determines the 
sign of the element



Do these F integrals make sense?

O2s

H6H7

z

yO
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Diagonalizing the Fock matrix gives the eigenvalues (MO energies) and
eigenvectors (MOs)   

Predict the eigenvectors qualitatively from what you know about 
the 2 x 2 matrix diagonalization.

Predict the signs of the 
Fock elements.
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Apparently red =+ and green = negative

Eigenvalues -- -20.24094         -1.27218          -0.62173         -0.45392         -0.39176
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Apparently red =+ and green = negative

Eigenvalues -- -20.24094         -1.27218          -0.62173         -0.45392         -0.39176
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The Density Matrix

Why is the 2px diag element EXACTLY 2.000?

Correlate the size and signs of off diags with bonding 
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The Fock matrix can be seen to be roughly PROPORTIONAL to the
Density matrix.

The reason is related to the fact that HF Energy is essentially the
"product" of the density and the Fock matrices
Notice that element by element, the product Fij x Pij is negative,
with a few exceptions.  When the product is positive, this generally 
indicates antibonding between the two orbitals.
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Fock matrix can be seen to roughly PROPORTIONAL to the
Density matrix.

Indeed, the entire SCF-HF procedure may said to be equivalent to 
varying the coefficients that make up the Density Matrix until the 
density maximally overlaps the Fock matrix. 

The reason is related to the fact that HF Energy is essentially the
"product" of the density and the Fock matrices.

Notice that element by element, the product Frs x Prs is negative,
with a few exceptions.  When the product is positive, this generally 
indicates antibonding between the two orbitals.
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A UNIVERSAL TRUTH:

The Expectation Value of ANY operator A is given by:
the trace of the product of the Density Matrix 

and the operator Matrix

If there is a density matrix, there must be a density operator.

"Density" = Probability Density = ψ*ψ
We can see that in a sense, <A> is the overlap integral of the 
operator and the density.

This is better seen in bra-ket notation:

*

**

on  operatenot  doesˆ where

)(ˆˆ

Ψ

ΨΨ=ΨΨ>=< ∫∫
A

dAdAA ττ
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A
PAtrace

PAAPAP

AcccAc

nnAmm

nnAmm

AA

n
nnmnnm

n m
mnnm

m n

mnmn
m n

nmn
m n

m

ii
m n

nm

operator  ofmatrix  andmatrix Density   theof
product  theof elements diagonal of sum

)(

||ˆ||

||ˆ||

|ˆ|

**

*

*

*

==

===

==

>Ψ><><Ψ<=

>Ψ><><Ψ=<

>ΨΨ<>=<

∑∑ ∑∑∑

∑∑∑∑

∑∑

∑∑

ΨΨΨΨ
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nm mn nm mn mn mn
m n mn mn

P A P A P A= =∑∑ ∑ ∑

Careful inspection, however, shows that the words used to state this operation 
disguise the underlying simplicity.  The operation is indeed literally like tracing
one matrix on the other. 
(Taking the trace of the matrix product is distracting information.)
For a symmetric real matrix: 

This is simply the sum of the products of all the corresponding matrix elements, 
taken in any order.  This is the SCALAR PRODUCT of the two matrices, i.e., 
completely analogous to the overlap integral of the matrices.  

0 1 0  1 0
1 0 1 0  1
0  1 0 1 0
1 0  1 0 1
0  1 0  1 0

7 0 1  4 5
0  6 0  9  0 
1  0 0 0  5
0  9  0 7 0 
1  8 0  0  0

Once you see the pattern in the left
matrix, you can quickly see that the
trace of the product of these
two matrices is 4 + 8 = 12 .

Next we will see how this formalism is hidden in
Levine's Eq. 14.45
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