
Eneutral = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA

A

C

B
JBB

JAA

JBA

Ecation =   hAA + 2hBB + JBB + 2JBA - KBA

Edifference =   hAA + JAA + 2JBA - KBA = εA = the 

orbital energy =   The ionization energy

Koopman's Theorem: 

The “MO Energy for orbital i” = 
minus the ionization potential
for removing an electron from 
the ith MO

If no relaxation due to changed  electron density

Example:
Remove one of the electrons in MO A

1
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Eneutral = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA

Eanion = 2hAA+ 2hBB + JAA + JBB + 4JBA - 2KBA + hCC + 2JCA – KCA + 2JCB– KCB

Edifference = hCC + 2JCA – KCA + 2JCB– KCB = εC
=   minus the Electron Affinity

Virtual (i.e., unoccupied 
orbitals are different!

Add an electron to MO C

any “MO Energy” is for an 
electron that "sees" ALL of the
occupied MO electrons 

If no relaxation due to changed  electron density

A

C

B
JBB

JAA

JBA
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HF-SCF with LCAO MOs

µ

µ
µ

µ

χ

χϕ
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== ∑
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/2 /2

/2 /2

, ,

one-electron density of an MO = *

 *

i i
n n

i i i i

n n
ii

i i

c c

c c D

µ µ ν ν
µ ν

µ ν µ ν µν µ ν
µ ν µ ν

φφ

φφ χ χ

χ χ χ χ

=

= =

∑ ∑

∑ ∑

Build the MOs from AOs:

i.e., a linear combination of AO products (transition densities)

and where 
ii

i iD c cµν µ ν=
3



Note that this defines the MO density matrix as

the elements : ii
i iD c cµν µ ν=

i.e., a linear combination of AO products 
(transition densities)

/2

,

/2 /2 /2

, , ,

Now, examine the one-electron density of an MO 
and write it as a matrix product:

*
n

ii
i i

n n n
ii ii

i i

D

c c D D

µ µν ν
µ ν

µ ν µ ν µν µ ν µ µν ν
µ ν µ ν µ ν

φφ χ χ

χ χ χ χ χ χ

=

= =

∑

∑ ∑ ∑
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Is explicitly the matrix multiplication: 

(χ1 χ 2 χ 3)        Dii
11 Dii

12 Dii
13 χ 1

Dii
21 Dii

22 Dii
23 χ2

Dii
31 Dii

32 Dii
33 χ3

/2

,

n
iiDµ µν ν

µ ν
χ χ∑

i.e., the characteristic summing over repeated indices, suggesting a 
1 x N row times an N x N square matrix, times N x1 column

5



Total one-electron density comes from 
summing over all occupied MOs

/2

, ,

/2

, ,

/2

, ,

(1) 2 *

(2 ) *  (2 because closed shell)

2 *

which is also a linear combination of AO products

n
ii

i occ

n
ii

i occ

n
ii

i occ

D D

D

D

µν µ ν
µ ν

µν µ ν
µ ν

µ µν ν
µ ν

χ χ

χ χ

χ χ

=

=

=

∑ ∑

∑ ∑

∑ ∑

Dµν is theµνth element of the density matrix 
in the AO basis 
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Convenient notation from Robert G. Parr lecture notes: 
Quantum Theory of Molecular Electronic Structure, 
Benjamin 1964

And used by  Jean Standard in the pdf I posted.

21
12

21
12

)2()2(1)1()1(

)2()1(1)2()1()|(

ττ

ττ

dddc
r

ba

dddb
r

cacdab

∫∫

∫∫

=

≡

In words:
(ab|cd) simply means the electron-electron repulsion of 

the generalized density due to the product of orbital a
times orbital b repelling that of orbital c times orbital d
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The Fock matrix in the AO basis 

The Jj part is repulsion of the χµχν product charge cloud with the jth
MO cloud of electron charge.  This is easy to understand because 
after summing, it is just the repulsion of the χµχν product with the 
entire electron cloud, D

The Kj part is repulsion of the product χµ𝜑𝜑j charge distribution with 
the χν𝜑𝜑j electron charge distribution.

( )
[ ])|()|(2|ˆ|

|ˆ||ˆ|2|ˆ|

|ˆ||ˆ|

**
jjjj
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KJh
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∑
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We eventually want to xpress J,K in terms of the D 
matrix and entirely with AOs

At present it is partly MO
J part is easy

[ ]

)|(ˆ

222
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22

)|()|(2|ˆ|

*

*

*
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DDD
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hF

jj

j
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j
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j
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j
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jjjj
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χχχχϕϕ

χχϕϕ

χχϕϕ

ϕνµϕϕϕµννµ

σλλσ
λσ
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σλσλ
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=

=

−+>=<

∑∑∑∑

∑∑∑

∑∑∑

∑
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)|()|(ˆ λσµνµν
λσ

λσ∑== DDJ

is just the repulsion of a "charge distribution 
defined as the function χµχν repelling the entire electronic density,
which is the same thing as:

)|(ˆ DJ µν=

)|( λσµν
λσ

λσ∑D
the sum of all repulsions between the  N2

products of the N AOs of the basis set,
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Consider H2 molecule

LCAO-MO method 

21
12

)2()1(1)2()1()|(

constantion normalizat  theis N and orbitals 1s  b , a where
)]2()2([)]1()1([

ττ dddb
r

cacdab

baNbaN

∫∫≡

=
++=Ψ

21
12

4

)2()1(1)2()1()|(

)2()2()][1()1([||)2()2()][1()1([
constantion normalizat  theis N and orbitals 1s identical  b , a where

)]2()2([)]1()1([

ττ dddb
r

cacdab

babaHbabaNE

baNbaN

∫∫≡

>++++<=

=
++=Ψ
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The K part keeps the χµχν product of AOs from repelling itself and 
other electrons with the same ms . Again, using 

)|(2/1)|(

)|()|(||

νσµλνσµλ

νϕµϕνϕµϕνµ

χχϕ

λσ
λσσ

λσ
λ

λλ
λ

σσ
σ

∑∑∑

∑∑∑
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==

==>

==

Dcc

K

cc

jj
j

jj
j

jj
j

j
j

jjj

Thus, the Fock matrix elements are:

[ ])|()|( 2
1 νσµλλσµν

λσ
λσµνµν −+= ∑DhF
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In words, the Fock matrix elements between Aos χµ and χν are:

1) The kinetic energy matrix elements: 

2)The integral over nuclear attraction 

3) Electrostatic repulsion between  all AO products pairs minus
½ the repulsion of the exchanged pairs 

[ ])|()|( 2
1 νσµλλσµν

λσ
λσµνµν −+= ∑DhF

13



Examine actual HF-SCF output from Gaussian 09 computation for
water.  (pdf from Jean Standard course website, Illinois State

Chemistry 460 Spring 2015 Dr. Jean M. Standard April 22, 2015 

A Hartree-Fock Calculation of the Water Molecule 

Introduction An example Hartree-Fock calculation of the water 
molecule will be presented.  In this case, the water molecule will 
have its geometry fixed at the experimental values of bond lengths 
(R(O-H)=0.95 Å) and bond angle (∠H-O-H= 104.5°).  Thus, the 
electronic energy and wavefunction will be computed for fixed 
nuclear positions; this is known as a single-point energy calculation.  
A minimal basis set of atomic orbital functions will be employed. 
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Gaussian input file Jean-h2o.gjf
(job input file)

All input files must have .gjf 
-------------------

%chk=C:\564-17\Jean-h20.chk
# opt hf/sto-3g pop=full

water from Jean Standard pdf, ordered to 
match output
callis 

0 1
8  0.000000   0.000000    0.116321
1 0 .000000   0.751155    -0.465285 
1  0.000000   -0.751155    -0.465285
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18

Explain qualitatively the sign and magnitude of
the overlap integral values in the matrix below
with the aid of the input geometry, which gives the signs

of the lobes of the p orbitals.  
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20

Explain qualitatively the sign and magnitude of
the KE integral values in the matrix below
with the aid of the input geometry, which gives the signs

of the lobes of the p orbitals.  
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Explain qualitatively the sign and magnitude of
the integral values in the matrix below
with the aid of the input geometry, which gives the signs

of the lobes of the p orbitals.  
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Density matrix element from AOs λσ
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26

Explain qualitatively the sign and magnitude of
the overlap integral values in the matrix below
with the aid of the input geometry, which gives the signs

of the lobes of the p orbitals.  



27

Qualitatively draw the 
MOs depicted by the 
columns, getting relative 
magnitude and signs 
correct
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