Experiment 3: Fluorescence Spectroscopy I (continued)

Last week: Part I.A: Introduction to steady state spectra

Today: Part 1.B: Fluorescence **Quenching** and the Stern-Volmer Relation

Prelab Lecture 7feb18 P. Callis

All life appears to be nurtured by the <u>excitation of electrons</u> by light in <u>photosynthesis</u>.

The <u>vision</u> enjoyed by higher life forms begins with the <u>electronic</u> <u>excitation</u> of a conjugated polyene.

"Quenching" is a generic term usually referring to a process that leads to a decrease in fluorescence.... (quenching is therefore technically a form of internal conversion)

Supermolecule (two molecules close together) Jablonski Diagram

"Quenching and Internal Conversion" Very important IN the NATURAL WORLD

Chlorophyll fluoresces if <u>not</u> doing photosynthesis; Using the light to make glucose is **quenching**

Our visual pigments in the retina do fast internal conversion, by cis-trans isomerization and do not fluoresce

Another kind of quenching: Forster Resonance Energy Transfer (FRET)

RED Fluorescence 5 2 2 2 Rhodanie Fluoregeiv Excitation Transfer. Not emission + absorption. It is through space Coulomb Law interaction of electrons. Efficiency of (distance appart) "Molecular ruler"

London dispersion force (the very same force that holds liquid nitrogen together.

The <u>FIRST</u> Step of Photosynthesis:

is <u>FRET</u> between "light harvesting" chlorophylls funneling the energy of any absorbed photon to the reaction center chlorophyll.

Binding phenomena and fluorescence quenching. I: Descriptive quantum principles of fluorescence quenching using a supermolecule approach *

Patrik R. Callis*

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States

The <u>Second</u> Step of Photosynthesis: is <u>quenching</u> of the fluorescence of chlorophyll by fast electron transfer

The <u>Second</u> Step of Photosynthesis: is <u>quenching</u> of the fluorescence of chlorophyll

By w:User:Bensaccount - http://en.wikipedia.org/wiki/Image:Z-scheme.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3461098

The <u>vision</u> enjoyed by higher life forms begins with the <u>electronic excitation</u> of a conjugated polyene.

This is actually a form of INTERNAL CONVERSION not quenching

Figure 11.3 page 410

Fig. 9.1 Light-driven isomerization of 11-*cis*-retinal attached to opsin (R) by a Schiff's base linkage. Theoretical calculations of the energy of both the ground state and an excited electronic state suggest a possible path whereby absorption of a photon will lead to conversion from the *cis* to the *trans* configuration about 60% of the time. The angle of rotation about the 11,12-double bond is plotted as the horizontal axis.

Snapshots of simulated isomerization of retinal Schiff base of rhodopsin (1hzx)

Retinal: 11-cis

excited state

all-trans

Fig. 21. <u>Broadened calculated spectra</u>. The spectral width of each line of the upwardly displaced spectra is determined by a Gaussian with width of 3, 100, 200, 300, 400, 500, 700, 800, 1200, and 1500 cm⁻¹ respectively. The area under each curve is proportional to the line width. (Agrees well with experiment)

Quenching Fluorescein

with iodide ion

Fluorescein at different pH

neutral (NOT soluble) (low pH)

Highest Occupied Molecular Orbital

Lowest Unoccupied Molecular Orbital (electron excited)

Quenching by iodide ion

Electron transfer from I⁻ to indole makes a radical pair that cannot fluoresce. (would violate Pauli exclusion)

Ring

lodine

Electron transferred from iodide to vacancy in HOMO of ring i.e., <u>QUENCHING</u>

2.6 Fluorescence Quenching (From Theory Handout)

In fluid solutions, QUENCHING involves a *diffusion controlled*, collisional interaction between the fluorophore and quencher.

What can happen following absorption of a photon?Absorption: M + hv (photon) $\rightarrow M^*$ rate: $= \varepsilon(\lambda)$ [M] x (Intensity of light)Fluorescence: $M^* \rightarrow M + hv'$ rate $= k_{rad}$ [M*]Internal conversion: $M^* \rightarrow M + heat$ rate $= k_{ic}$ [M*]

Intersystem crossing $M^* \rightarrow M(triplet) + heat$ rate = k_{isc} [M*] **Quenching:** $M^* + Q \rightarrow M + Q + heat$ rate = $k_q[Q][M^*]$ Fluorescence Quantum yield = Φ_f = the rate of fluorescing divided by the total rate of leaving the excited state:

$$\Phi_{f} = \frac{k_{rad}[M^{*}]}{(k_{rad} + k_{ic} + k_{isc})[M^{*}] + k_{q}[Q][M^{*}]} = \frac{k_{rad}}{k_{rad} + k_{ic} + k_{isc} + k_{q}[Q]}$$

For fluorescein, $\Phi_f = 0.97$, $\tau_{rad} = 4.74$ ns so krad= 2.1 x 10⁸ k_{ic} + k_{isc} =7 x 10⁶ s⁻¹ For quenching by iodide ion, $k_q=2 \times 10^9$ M⁻¹s⁻¹.

maximum molar decadic extinction coefficient, $\epsilon_{max} = 92,300$ M⁻¹cm⁻¹ to find the concentration $A = \epsilon C x$ ²³ We will measure k_q from the Stern-Volmer Eq.

Rate of collisions = $k_q [M^*][Q]$ Assume every collision quenches. (Diffusion Controlled)

<u>Memorize</u> that this k_q for small molecules is on the order of 10⁹ M⁻¹ s⁻¹ in water.

Depends only on the frictional coefficient (size)

Diffusion coefficient = k_BT/frictional coefficient

We will also make use of the maximum molar decadic extinction coefficient,

 $\varepsilon_{max} = 92,300 \text{ M}^{-1}\text{cm}^{-1}$ to find the concentration $A = \varepsilon Cx$

4.2.3 Fluorescence Quenching by Iodide

1. Calculate he quantum yield for each concentration of the iodide, [Q], using numbers from the Theory document and :

<u>Fluorescence Quantum Yield</u> (a measure of fluorescence **brightness**)

Quantum Yield =
$$\Phi_f = \frac{k_{rad}}{k_{rad} + k_{ic} + k_{isc} + k_q[Q]}$$

Fluorescence Lifetime = 1/(sum of rate constants)

 $= 1/(k_{rad} + k_{ic} + k_{isc} + k_q[Q]) = \tau_f$

4.2.3 Fluorescence Quenching by lodide

1. Calculate he quantum yield for each concentration of the iodide, [Q], using numbers from the Theory document and

Compare the measured ratio of the peak height of the quenched cases to the unquenched peak with the calculated values.

$$\Phi_f([Q]) = \frac{k_{rad}}{k_{rad} + k_{ic} + k_{isc} + k_q[Q]} = \text{const x Intensity of fluor} = \mathbf{I}$$

 Φ_f no quencher = $\frac{k_{rad}}{k_{rad} + k_{ic} + k_{isc}}$ = const x Intensity of fluor = I_0

$$\frac{I_0}{I} = \frac{(k_{rad} + k_{ic} + k_{isc}) + k_q[Q]}{(k_{rad} + k_{ic} + k_{isc})} = \frac{(k_{rad} + k_{ic} + k_{isc})}{(k_{rad} + k_{ic} + k_{isc})} + \frac{k_q[Q]}{(k_{rad} + k_{ic} + k_{isc})}$$

=1+ $k_q \tau_0[Q]$, where τ_0 is the unquenched fluorescence lifetime

2., the resulting equation is the widely used Stern-Volmer equation:

where τ_0 is the lifetime in the absence of the quencher, $(k_{rad} + k_{ic} + k_{isc})^{-1}$, I and I_0 are the intensities in the presence and absence of quencher, respectively, and k_q is the diffusion-controlled quenching rate. The product $k_q \tau_0$ is known as the Stern-Volmer constant, K_{sv} .

3. Plot $\frac{1}{4} I_0 / I$ vs. [Q]. Do you get a straight line? What is the Stern-Volmer constant determined from your plot?